debisoft commited on
Commit
bfda157
1 Parent(s): 5212cb6

1st commit

Browse files
Files changed (2) hide show
  1. app.py +67 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import requests
4
+ import os
5
+ import gradio as gr
6
+ import json
7
+ from dotenv import load_dotenv, find_dotenv
8
+ _ = load_dotenv(find_dotenv())
9
+
10
+ from predibase import Predibase, FinetuningConfig, DeploymentConfig
11
+
12
+ # Get a KEY from https://app.predibase.com/
13
+ api_token = os.getenv('PREDIBASE_API_KEY')
14
+ pb = Predibase(api_token=api_token)
15
+
16
+ adapter_id = 'tour-assistant-model/14'
17
+ lorax_client = pb.deployments.client("solar-1-mini-chat-240612")
18
+
19
+
20
+ def extract_json(gen_text, n_shot_learning=0):
21
+ if(n_shot_learning == -1) :
22
+ start_index = 0
23
+ else :
24
+ start_index = gen_text.index("### Response:\n{") + 14
25
+ if(n_shot_learning > 0) :
26
+ for i in range(0, n_shot_learning):
27
+ gen_text = gen_text[start_index:]
28
+ start_index = gen_text.index("### Response:\n{") + 14
29
+ end_index = gen_text.find("}\n\n### ") + 1
30
+ return gen_text[start_index:end_index]
31
+
32
+ def get_completion(prompt):
33
+ return lorax_client.generate(prompt, adapter_id=adapter_id, max_new_tokens=1000).generated_text
34
+
35
+ def greet(input):
36
+ total_prompt=f"""
37
+ <|im_start|>system\nYou are a helpful support assistant. Answer the following question.<|im_end|>
38
+ <|im_start|>question\n How much are union dues, and what do they cover?
39
+ <|im_start|>answer\nThe union dues for our union is 3%."<|im_end|>
40
+
41
+ <|im_start|>system\nYou are a helpful support assistant. Answer the following question.<|im_end|>
42
+ <|im_start|>question
43
+ {input}. Return as a JSON response<|im_end|>
44
+ <|im_start|>answer
45
+ """
46
+
47
+ print("***total_prompt:")
48
+ print(total_prompt)
49
+ response = get_completion(total_prompt)
50
+ #gen_text = response["predictions"][0]["generated_text"]
51
+ #return json.dumps(extract_json(gen_text, 3))
52
+
53
+ ###gen_text = response["choices"][0]["text"]
54
+
55
+ #return gen_text
56
+
57
+ ###return json.dumps(extract_json(gen_text, -1))
58
+ return response
59
+
60
+ #return json.dumps(response)
61
+
62
+ #iface = gr.Interface(fn=greet, inputs="text", outputs="text")
63
+ #iface.launch()
64
+
65
+ #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
66
+ iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="json")
67
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ openai
2
+ python-dotenv
3
+ predibase