import numpy as np import pandas as pd import requests import os import gradio as gr import json from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) from predibase import Predibase, FinetuningConfig, DeploymentConfig # Get a KEY from https://app.predibase.com/ api_token = os.getenv('PREDIBASE_API_KEY') pb = Predibase(api_token=api_token) adapter_id = 'tour-assistant-model/14' lorax_client = pb.deployments.client("solar-1-mini-chat-240612") def extract_json(gen_text, n_shot_learning=0): if(n_shot_learning == -1) : start_index = 0 else : start_index = gen_text.index("### Response:\n{") + 14 if(n_shot_learning > 0) : for i in range(0, n_shot_learning): gen_text = gen_text[start_index:] start_index = gen_text.index("### Response:\n{") + 14 end_index = gen_text.find("}\n\n### ") + 1 return gen_text[start_index:end_index] def get_completion(prompt): return lorax_client.generate(prompt, adapter_id=adapter_id, max_new_tokens=1000).generated_text def greet(input): total_prompt=f""" <|im_start|>system\nYou are a helpful support assistant. Answer the following question.<|im_end|> <|im_start|>question\n How much are union dues, and what do they cover? <|im_start|>answer\nThe union dues for our union is 3%."<|im_end|> <|im_start|>system\nYou are a helpful support assistant. Answer the following question.<|im_end|> <|im_start|>question {input}. Return as a JSON response<|im_end|> <|im_start|>answer """ print("***total_prompt:") print(total_prompt) response = get_completion(total_prompt) #gen_text = response["predictions"][0]["generated_text"] #return json.dumps(extract_json(gen_text, 3)) ###gen_text = response["choices"][0]["text"] #return gen_text ###return json.dumps(extract_json(gen_text, -1)) return response #return json.dumps(response) #iface = gr.Interface(fn=greet, inputs="text", outputs="text") #iface.launch() #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="json") iface.launch()