Spaces:
Sleeping
Sleeping
File size: 9,929 Bytes
442c1b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import torch
import torch.nn as nn
import numpy as np
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import os
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from PIL import Image
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
# Check if input and output channels are the same for the residual connection
self.same_channels = in_channels == out_channels
# Flag for whether or not to use residual connection
self.is_res = is_res
# First convolutional layer
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1), # 3x3 kernel with stride 1 and padding 1
nn.BatchNorm2d(out_channels), # Batch normalization
nn.GELU(), # GELU activation function
)
# Second convolutional layer
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1), # 3x3 kernel with stride 1 and padding 1
nn.BatchNorm2d(out_channels), # Batch normalization
nn.GELU(), # GELU activation function
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# If using residual connection
if self.is_res:
# Apply first convolutional layer
x1 = self.conv1(x)
# Apply second convolutional layer
x2 = self.conv2(x1)
# If input and output channels are the same, add residual connection directly
if self.same_channels:
out = x + x2
else:
# If not, apply a 1x1 convolutional layer to match dimensions before adding residual connection
shortcut = nn.Conv2d(x.shape[1], x2.shape[1], kernel_size=1, stride=1, padding=0).to(x.device)
out = shortcut(x) + x2
#print(f"resconv forward: x {x.shape}, x1 {x1.shape}, x2 {x2.shape}, out {out.shape}")
# Normalize output tensor
return out / 1.414
# If not using residual connection, return output of second convolutional layer
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
# Method to get the number of output channels for this block
def get_out_channels(self):
return self.conv2[0].out_channels
# Method to set the number of output channels for this block
def set_out_channels(self, out_channels):
self.conv1[0].out_channels = out_channels
self.conv2[0].in_channels = out_channels
self.conv2[0].out_channels = out_channels
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
# Create a list of layers for the upsampling block
# The block consists of a ConvTranspose2d layer for upsampling, followed by two ResidualConvBlock layers
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
# Use the layers to create a sequential model
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
# Concatenate the input tensor x with the skip connection tensor along the channel dimension
x = torch.cat((x, skip), 1)
# Pass the concatenated tensor through the sequential model and return the output
x = self.model(x)
return x
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
# Create a list of layers for the downsampling block
# Each block consists of two ResidualConvBlock layers, followed by a MaxPool2d layer for downsampling
layers = [ResidualConvBlock(in_channels, out_channels), ResidualConvBlock(out_channels, out_channels), nn.MaxPool2d(2)]
# Use the layers to create a sequential model
self.model = nn.Sequential(*layers)
def forward(self, x):
# Pass the input through the sequential model and return the output
return self.model(x)
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
This class defines a generic one layer feed-forward neural network for embedding input data of
dimensionality input_dim to an embedding space of dimensionality emb_dim.
'''
self.input_dim = input_dim
# define the layers for the network
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
# create a PyTorch sequential model consisting of the defined layers
self.model = nn.Sequential(*layers)
def forward(self, x):
# flatten the input tensor
x = x.view(-1, self.input_dim)
# apply the model layers to the flattened tensor
return self.model(x)
def unorm(x):
# unity norm. results in range of [0,1]
# assume x (h,w,3)
xmax = x.max((0,1))
xmin = x.min((0,1))
return(x - xmin)/(xmax - xmin)
def norm_all(store, n_t, n_s):
# runs unity norm on all timesteps of all samples
nstore = np.zeros_like(store)
for t in range(n_t):
for s in range(n_s):
nstore[t,s] = unorm(store[t,s])
return nstore
def norm_torch(x_all):
# runs unity norm on all timesteps of all samples
# input is (n_samples, 3,h,w), the torch image format
x = x_all.cpu().numpy()
xmax = x.max((2,3))
xmin = x.min((2,3))
xmax = np.expand_dims(xmax,(2,3))
xmin = np.expand_dims(xmin,(2,3))
nstore = (x - xmin)/(xmax - xmin)
return torch.from_numpy(nstore)
def gen_tst_context(n_cfeat):
"""
Generate test context vectors
"""
vec = torch.tensor([
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0], # human, non-human, food, spell, side-facing
[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [0,0,0,0,0]] # human, non-human, food, spell, side-facing
)
return len(vec), vec
def plot_grid(x,n_sample,n_rows,save_dir,w):
# x:(n_sample, 3, h, w)
ncols = n_sample//n_rows
grid = make_grid(norm_torch(x), nrow=ncols) # curiously, nrow is number of columns.. or number of items in the row.
save_image(grid, save_dir + f"run_image_w{w}.png")
print('saved image at ' + save_dir + f"run_image_w{w}.png")
return grid
def plot_sample(x_gen_store,n_sample,nrows,save_dir, fn, w, save=False):
ncols = n_sample//nrows
sx_gen_store = np.moveaxis(x_gen_store,2,4) # change to Numpy image format (h,w,channels) vs (channels,h,w)
nsx_gen_store = norm_all(sx_gen_store, sx_gen_store.shape[0], n_sample) # unity norm to put in range [0,1] for np.imshow
# create gif of images evolving over time, based on x_gen_store
fig, axs = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True,figsize=(ncols,nrows))
def animate_diff(i, store):
print(f'gif animating frame {i} of {store.shape[0]}', end='\r')
plots = []
for row in range(nrows):
for col in range(ncols):
axs[row, col].clear()
axs[row, col].set_xticks([])
axs[row, col].set_yticks([])
plots.append(axs[row, col].imshow(store[i,(row*ncols)+col]))
return plots
ani = FuncAnimation(fig, animate_diff, fargs=[nsx_gen_store], interval=200, blit=False, repeat=True, frames=nsx_gen_store.shape[0])
plt.close()
if save:
ani.save(save_dir + f"{fn}_w{w}.gif", dpi=100, writer=PillowWriter(fps=5))
print('saved gif at ' + save_dir + f"{fn}_w{w}.gif")
return ani
class CustomDataset(Dataset):
def __init__(self, sfilename, lfilename, transform, null_context=False):
self.sprites = np.load(sfilename)
self.slabels = np.load(lfilename)
print(f"sprite shape: {self.sprites.shape}")
print(f"labels shape: {self.slabels.shape}")
self.transform = transform
self.null_context = null_context
self.sprites_shape = self.sprites.shape
self.slabel_shape = self.slabels.shape
# Return the number of images in the dataset
def __len__(self):
return len(self.sprites)
# Get the image and label at a given index
def __getitem__(self, idx):
# Return the image and label as a tuple
if self.transform:
image = self.transform(self.sprites[idx])
if self.null_context:
label = torch.tensor(0).to(torch.int64)
else:
label = torch.tensor(self.slabels[idx]).to(torch.int64)
return (image, label)
def getshapes(self):
# return shapes of data and labels
return self.sprites_shape, self.slabel_shape
transform = transforms.Compose([
transforms.ToTensor(), # from [0,255] to range [0.0,1.0]
transforms.Normalize((0.5,), (0.5,)) # range [-1,1]
])
|