File size: 9,929 Bytes
442c1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torch.nn as nn
import numpy as np
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import os
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from PIL import Image


class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()

        # Check if input and output channels are the same for the residual connection
        self.same_channels = in_channels == out_channels

        # Flag for whether or not to use residual connection
        self.is_res = is_res

        # First convolutional layer
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),   # 3x3 kernel with stride 1 and padding 1
            nn.BatchNorm2d(out_channels),   # Batch normalization
            nn.GELU(),   # GELU activation function
        )

        # Second convolutional layer
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),   # 3x3 kernel with stride 1 and padding 1
            nn.BatchNorm2d(out_channels),   # Batch normalization
            nn.GELU(),   # GELU activation function
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:

        # If using residual connection
        if self.is_res:
            # Apply first convolutional layer
            x1 = self.conv1(x)

            # Apply second convolutional layer
            x2 = self.conv2(x1)

            # If input and output channels are the same, add residual connection directly
            if self.same_channels:
                out = x + x2
            else:
                # If not, apply a 1x1 convolutional layer to match dimensions before adding residual connection
                shortcut = nn.Conv2d(x.shape[1], x2.shape[1], kernel_size=1, stride=1, padding=0).to(x.device)
                out = shortcut(x) + x2
            #print(f"resconv forward: x {x.shape}, x1 {x1.shape}, x2 {x2.shape}, out {out.shape}")

            # Normalize output tensor
            return out / 1.414

        # If not using residual connection, return output of second convolutional layer
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2

    # Method to get the number of output channels for this block
    def get_out_channels(self):
        return self.conv2[0].out_channels

    # Method to set the number of output channels for this block
    def set_out_channels(self, out_channels):
        self.conv1[0].out_channels = out_channels
        self.conv2[0].in_channels = out_channels
        self.conv2[0].out_channels = out_channels

        

class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()
        
        # Create a list of layers for the upsampling block
        # The block consists of a ConvTranspose2d layer for upsampling, followed by two ResidualConvBlock layers
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]
        
        # Use the layers to create a sequential model
        self.model = nn.Sequential(*layers)

    def forward(self, x, skip):
        # Concatenate the input tensor x with the skip connection tensor along the channel dimension
        x = torch.cat((x, skip), 1)
        
        # Pass the concatenated tensor through the sequential model and return the output
        x = self.model(x)
        return x

    
class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()
        
        # Create a list of layers for the downsampling block
        # Each block consists of two ResidualConvBlock layers, followed by a MaxPool2d layer for downsampling
        layers = [ResidualConvBlock(in_channels, out_channels), ResidualConvBlock(out_channels, out_channels), nn.MaxPool2d(2)]
        
        # Use the layers to create a sequential model
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        # Pass the input through the sequential model and return the output
        return self.model(x)

class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        '''
        This class defines a generic one layer feed-forward neural network for embedding input data of
        dimensionality input_dim to an embedding space of dimensionality emb_dim.
        '''
        self.input_dim = input_dim
        
        # define the layers for the network
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]
        
        # create a PyTorch sequential model consisting of the defined layers
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        # flatten the input tensor
        x = x.view(-1, self.input_dim)
        # apply the model layers to the flattened tensor
        return self.model(x)
    
def unorm(x):
    # unity norm. results in range of [0,1]
    # assume x (h,w,3)
    xmax = x.max((0,1))
    xmin = x.min((0,1))
    return(x - xmin)/(xmax - xmin)

def norm_all(store, n_t, n_s):
    # runs unity norm on all timesteps of all samples
    nstore = np.zeros_like(store)
    for t in range(n_t):
        for s in range(n_s):
            nstore[t,s] = unorm(store[t,s])
    return nstore

def norm_torch(x_all):
    # runs unity norm on all timesteps of all samples
    # input is (n_samples, 3,h,w), the torch image format
    x = x_all.cpu().numpy()
    xmax = x.max((2,3))
    xmin = x.min((2,3))
    xmax = np.expand_dims(xmax,(2,3)) 
    xmin = np.expand_dims(xmin,(2,3))
    nstore = (x - xmin)/(xmax - xmin)
    return torch.from_numpy(nstore)

def gen_tst_context(n_cfeat):
    """
    Generate test context vectors
    """
    vec = torch.tensor([
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0],      # human, non-human, food, spell, side-facing
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0],      # human, non-human, food, spell, side-facing
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0],      # human, non-human, food, spell, side-facing
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0],      # human, non-human, food, spell, side-facing
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0],      # human, non-human, food, spell, side-facing
    [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1],  [0,0,0,0,0]]      # human, non-human, food, spell, side-facing
    )
    return len(vec), vec

def plot_grid(x,n_sample,n_rows,save_dir,w):
    # x:(n_sample, 3, h, w)
    ncols = n_sample//n_rows
    grid = make_grid(norm_torch(x), nrow=ncols)  # curiously, nrow is number of columns.. or number of items in the row.
    save_image(grid, save_dir + f"run_image_w{w}.png")
    print('saved image at ' + save_dir + f"run_image_w{w}.png")
    return grid

def plot_sample(x_gen_store,n_sample,nrows,save_dir, fn,  w, save=False):
    ncols = n_sample//nrows
    sx_gen_store = np.moveaxis(x_gen_store,2,4)                               # change to Numpy image format (h,w,channels) vs (channels,h,w)
    nsx_gen_store = norm_all(sx_gen_store, sx_gen_store.shape[0], n_sample)   # unity norm to put in range [0,1] for np.imshow
    
    # create gif of images evolving over time, based on x_gen_store
    fig, axs = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, sharey=True,figsize=(ncols,nrows))
    def animate_diff(i, store):
        print(f'gif animating frame {i} of {store.shape[0]}', end='\r')
        plots = []
        for row in range(nrows):
            for col in range(ncols):
                axs[row, col].clear()
                axs[row, col].set_xticks([])
                axs[row, col].set_yticks([])
                plots.append(axs[row, col].imshow(store[i,(row*ncols)+col]))
        return plots
    ani = FuncAnimation(fig, animate_diff, fargs=[nsx_gen_store],  interval=200, blit=False, repeat=True, frames=nsx_gen_store.shape[0]) 
    plt.close()
    if save:
        ani.save(save_dir + f"{fn}_w{w}.gif", dpi=100, writer=PillowWriter(fps=5))
        print('saved gif at ' + save_dir + f"{fn}_w{w}.gif")
    return ani


class CustomDataset(Dataset):
    def __init__(self, sfilename, lfilename, transform, null_context=False):
        self.sprites = np.load(sfilename)
        self.slabels = np.load(lfilename)
        print(f"sprite shape: {self.sprites.shape}")
        print(f"labels shape: {self.slabels.shape}")
        self.transform = transform
        self.null_context = null_context
        self.sprites_shape = self.sprites.shape
        self.slabel_shape = self.slabels.shape
                
    # Return the number of images in the dataset
    def __len__(self):
        return len(self.sprites)
    
    # Get the image and label at a given index
    def __getitem__(self, idx):
        # Return the image and label as a tuple
        if self.transform:
            image = self.transform(self.sprites[idx])
            if self.null_context:
                label = torch.tensor(0).to(torch.int64)
            else:
                label = torch.tensor(self.slabels[idx]).to(torch.int64)
        return (image, label)

    def getshapes(self):
        # return shapes of data and labels
        return self.sprites_shape, self.slabel_shape

transform = transforms.Compose([
    transforms.ToTensor(),                # from [0,255] to range [0.0,1.0]
    transforms.Normalize((0.5,), (0.5,))  # range [-1,1]

])