debisoft commited on
Commit
25714ed
·
1 Parent(s): 45131d1
Files changed (1) hide show
  1. app.py +18 -7
app.py CHANGED
@@ -223,18 +223,29 @@ def sample_ddpm(n_sample, save_rate=20):
223
 
224
  def greet(input):
225
  steps = int(input)
226
- #samples, intermediate = sample_ddim(32, n=steps)
227
  #ctx = F.one_hot(torch.randint(0, 5, (32,)), 5).to(device=device).float()
228
  #samples, intermediate = sample_ddim_context(32, ctx, steps)
229
- samples, intermediate = sample_ddpm(steps)
230
  #response = transform2(transform(np.moveaxis(samples.detach().cpu().numpy(),1,3)[-1]))
231
  #response2 = transform2(transform(np.moveaxis(samples.detach().cpu().numpy(),1,3)[1]))
232
  #response = im.fromarray(intermediate[24][0][1]).convert("RGB")
 
 
 
 
233
  response = intermediate.shape;
234
- response2 = transform2(transform(np.moveaxis(intermediate,2,4)[0][0]))
235
- response3 = transform2(transform(np.moveaxis(intermediate,2,4)[int(steps/2)][0]))
236
- response4 = transform2(transform(np.moveaxis(intermediate,2,4)[int(steps/4)][0]))
237
- response5 = transform2(transform(np.moveaxis(intermediate,2,4)[-1][0]))
 
 
 
 
 
 
 
238
 
239
  return response, response2, response3, response4, response5
240
 
@@ -245,6 +256,6 @@ transform2 = transforms.ToPILImage()
245
 
246
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
247
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs=[gr.outputs.Image(type="pil", width=64, label="Output Image"), gr.outputs.Image(type="pil", width=64, label="Output Image2"), gr.outputs.Image(type="pil", width=64, label="Output Image3"), gr.outputs.Image(type="pil", width=64, label="Output Image4")])
248
- iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="steps", value=500)], outputs=[gr.Textbox(label="Info"), gr.Image(type="pil", width=64, label="Output Image"), gr.Image(type="pil", width=64, label="Output Image2"), gr.Image(type="pil", width=64, label="Output Image3"), gr.Image(type="pil", width=64, label="Output Image4")])
249
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs=[gr.Textbox()])
250
  iface.launch()
 
223
 
224
  def greet(input):
225
  steps = int(input)
226
+ samples, intermediate = sample_ddim(32, n=steps)
227
  #ctx = F.one_hot(torch.randint(0, 5, (32,)), 5).to(device=device).float()
228
  #samples, intermediate = sample_ddim_context(32, ctx, steps)
229
+ #samples, intermediate = sample_ddpm(steps)
230
  #response = transform2(transform(np.moveaxis(samples.detach().cpu().numpy(),1,3)[-1]))
231
  #response2 = transform2(transform(np.moveaxis(samples.detach().cpu().numpy(),1,3)[1]))
232
  #response = im.fromarray(intermediate[24][0][1]).convert("RGB")
233
+
234
+ sx_gen_store = np.moveaxis(intermediate,2,4)
235
+ nsx_gen_store = norm_all(sx_gen_store, sx_gen_store.shape[0], 32)
236
+
237
  response = intermediate.shape;
238
+ response2 = transform2(transform(nsx_gen_store[0][0]))
239
+ response3 = transform2(transform(nsx_gen_store[int(steps/2)][0]))
240
+ response4 = transform2(transform(nsx_gen_store[int(steps/4)][0]))
241
+ response5 = transform2(transform(nsx_gen_store[-1][0]))
242
+
243
+
244
+ #response = intermediate.shape;
245
+ #response2 = transform2(transform(np.moveaxis(intermediate,2,4)[0][0]))
246
+ #response3 = transform2(transform(np.moveaxis(intermediate,2,4)[int(steps/2)][0]))
247
+ #response4 = transform2(transform(np.moveaxis(intermediate,2,4)[int(steps/4)][0]))
248
+ #response5 = transform2(transform(np.moveaxis(intermediate,2,4)[-1][0]))
249
 
250
  return response, response2, response3, response4, response5
251
 
 
256
 
257
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
258
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs=[gr.outputs.Image(type="pil", width=64, label="Output Image"), gr.outputs.Image(type="pil", width=64, label="Output Image2"), gr.outputs.Image(type="pil", width=64, label="Output Image3"), gr.outputs.Image(type="pil", width=64, label="Output Image4")])
259
+ iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="steps", value=20)], outputs=[gr.Textbox(label="Info"), gr.Image(type="pil", width=64, label="Output Image"), gr.Image(type="pil", width=64, label="Output Image2"), gr.Image(type="pil", width=64, label="Output Image3"), gr.Image(type="pil", width=64, label="Output Image4")])
260
  #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Co-Retailing Business")], outputs=[gr.Textbox()])
261
  iface.launch()