Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,742 Bytes
6b448ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device
from ...pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = RePaintPipeline
params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"}
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
batch_params = IMAGE_INPAINTING_BATCH_PARAMS
test_cpu_offload = False
def get_dummy_components(self):
torch.manual_seed(0)
torch.manual_seed(0)
unet = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = RePaintScheduler()
components = {"unet": unet, "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
mask = (image > 0).to(device=device, dtype=torch.float32)
inputs = {
"image": image,
"mask_image": mask,
"generator": generator,
"num_inference_steps": 5,
"eta": 0.0,
"jump_length": 2,
"jump_n_sample": 2,
"output_type": "numpy",
}
return inputs
def test_repaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = RePaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
# RePaint can hardly be made deterministic since the scheduler is currently always
# nondeterministic
@unittest.skip("non-deterministic pipeline")
def test_inference_batch_single_identical(self):
return super().test_inference_batch_single_identical()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
@nightly
@require_torch_gpu
class RepaintPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_celebahq(self):
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256_result.npy"
)
model_id = "google/ddpm-ema-celebahq-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = RePaintScheduler.from_pretrained(model_id)
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
repaint.set_progress_bar_config(disable=None)
repaint.enable_attention_slicing()
generator = torch.manual_seed(0)
output = repaint(
original_image,
mask_image,
num_inference_steps=250,
eta=0.0,
jump_length=10,
jump_n_sample=10,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).mean() < 1e-2
|