tango2 / diffusers /tests /models /test_models_unet_1d.py
deepanway's picture
add required files
6b448ad
raw
history blame
10.1 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import UNet1DModel
from diffusers.utils import floats_tensor, slow, torch_device
from ..test_modeling_common import ModelTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class UNet1DModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet1DModel
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 16)
def test_ema_training(self):
pass
def test_training(self):
pass
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_determinism(self):
super().test_determinism()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output(self):
super().test_output()
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64, 128, 256),
"in_channels": 14,
"out_channels": 14,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1.0,
"out_block_type": "OutConv1DBlock",
"mid_block_type": "MidResTemporalBlock1D",
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_hub(self):
model, loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output_pretrained(self):
model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet")
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = model.in_channels
seq_len = 16
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = model(noise, time_step).sample.permute(0, 2, 1)
output_slice = output[0, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
@slow
def test_unet_1d_maestro(self):
model_id = "harmonai/maestro-150k"
model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
model.to(torch_device)
sample_size = 65536
noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
timestep = torch.tensor([1]).to(torch_device)
with torch.no_grad():
output = model(noise, timestep).sample
output_sum = output.abs().sum()
output_max = output.abs().max()
assert (output_sum - 224.0896).abs() < 4e-2
assert (output_max - 0.0607).abs() < 4e-4
class UNetRLModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet1DModel
@property
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (4, 14, 1)
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_determinism(self):
super().test_determinism()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output(self):
# UNetRL is a value-function is different output shape
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_ema_training(self):
pass
def test_training(self):
pass
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 14,
"out_channels": 14,
"down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
"up_block_types": [],
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": [32, 64, 128, 256],
"layers_per_block": 1,
"downsample_each_block": True,
"use_timestep_embedding": True,
"freq_shift": 1.0,
"flip_sin_to_cos": False,
"time_embedding_type": "positional",
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_from_pretrained_hub(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
self.assertIsNotNone(value_function)
self.assertEqual(len(vf_loading_info["missing_keys"]), 0)
value_function.to(torch_device)
image = value_function(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device == "mps", "mish op not supported in MPS")
def test_output_pretrained(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
num_features = value_function.in_channels
seq_len = 14
noise = torch.randn((1, seq_len, num_features)).permute(
0, 2, 1
) # match original, we can update values and remove
time_step = torch.full((num_features,), 0)
with torch.no_grad():
output = value_function(noise, time_step).sample
# fmt: off
expected_output_slice = torch.tensor([165.25] * seq_len)
# fmt: on
self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass