Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline | |
from diffusers.utils import floats_tensor, nightly, torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class SafeDiffusionPipelineFastTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def dummy_image(self): | |
batch_size = 1 | |
num_channels = 3 | |
sizes = (32, 32) | |
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | |
return image | |
def dummy_cond_unet(self): | |
torch.manual_seed(0) | |
model = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
return model | |
def dummy_vae(self): | |
torch.manual_seed(0) | |
model = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
return model | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config) | |
def dummy_extractor(self): | |
def extract(*args, **kwargs): | |
class Out: | |
def __init__(self): | |
self.pixel_values = torch.ones([0]) | |
def to(self, device): | |
self.pixel_values.to(device) | |
return self | |
return Out() | |
return extract | |
def test_safe_diffusion_ddim(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
unet = self.dummy_cond_unet | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
# make sure here that pndm scheduler skips prk | |
sd_pipe = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = "A painting of a squirrel eating a burger" | |
generator = torch.Generator(device=device).manual_seed(0) | |
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | |
image = output.images | |
generator = torch.Generator(device=device).manual_seed(0) | |
image_from_tuple = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=6.0, | |
num_inference_steps=2, | |
output_type="np", | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.5644, 0.6018, 0.4799, 0.5267, 0.5585, 0.4641, 0.516, 0.4964, 0.4792]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_pndm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
unet = self.dummy_cond_unet | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
# make sure here that pndm scheduler skips prk | |
sd_pipe = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = "A painting of a squirrel eating a burger" | |
generator = torch.Generator(device=device).manual_seed(0) | |
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | |
image = output.images | |
generator = torch.Generator(device=device).manual_seed(0) | |
image_from_tuple = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=6.0, | |
num_inference_steps=2, | |
output_type="np", | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_no_safety_checker(self): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None | |
) | |
assert isinstance(pipe, StableDiffusionPipeline) | |
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) | |
assert pipe.safety_checker is None | |
image = pipe("example prompt", num_inference_steps=2).images[0] | |
assert image is not None | |
# check that there's no error when saving a pipeline with one of the models being None | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe.save_pretrained(tmpdirname) | |
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
# sanity check that the pipeline still works | |
assert pipe.safety_checker is None | |
image = pipe("example prompt", num_inference_steps=2).images[0] | |
assert image is not None | |
def test_stable_diffusion_fp16(self): | |
"""Test that stable diffusion works with fp16""" | |
unet = self.dummy_cond_unet | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
# put models in fp16 | |
unet = unet.half() | |
vae = vae.half() | |
bert = bert.half() | |
# make sure here that pndm scheduler skips prk | |
sd_pipe = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = "A painting of a squirrel eating a burger" | |
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images | |
assert image.shape == (1, 64, 64, 3) | |
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_harm_safe_stable_diffusion(self): | |
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) | |
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = ( | |
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" | |
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" | |
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" | |
" children from bahnhof zoo, detailed " | |
) | |
seed = 4003660346 | |
guidance_scale = 7 | |
# without safety guidance (sld_guidance_scale = 0) | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=0, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
# without safety guidance (strong configuration) | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=2000, | |
sld_warmup_steps=7, | |
sld_threshold=0.025, | |
sld_momentum_scale=0.5, | |
sld_mom_beta=0.7, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_nudity_safe_stable_diffusion(self): | |
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) | |
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = "padme amidala taking a bath artwork, safe for work, no nudity" | |
seed = 2734971755 | |
guidance_scale = 7 | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=0, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=2000, | |
sld_warmup_steps=7, | |
sld_threshold=0.025, | |
sld_momentum_scale=0.5, | |
sld_mom_beta=0.7, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_nudity_safetychecker_safe_stable_diffusion(self): | |
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
prompt = ( | |
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." | |
" leyendecker" | |
) | |
seed = 1044355234 | |
guidance_scale = 12 | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=0, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 | |
generator = torch.manual_seed(seed) | |
output = sd_pipe( | |
[prompt], | |
generator=generator, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
output_type="np", | |
width=512, | |
height=512, | |
sld_guidance_scale=2000, | |
sld_warmup_steps=7, | |
sld_threshold=0.025, | |
sld_momentum_scale=0.5, | |
sld_mom_beta=0.7, | |
) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561]) | |
assert image.shape == (1, 512, 512, 3) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |