File size: 2,759 Bytes
fd43906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import numpy as np
import torchaudio


def get_mel_from_wav(audio, _stft):
    audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
    audio = torch.autograd.Variable(audio, requires_grad=False)
    melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
    melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
    log_magnitudes_stft = (
        torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
    )
    energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
    return melspec, log_magnitudes_stft, energy


def _pad_spec(fbank, target_length=1024):
    n_frames = fbank.shape[0]
    p = target_length - n_frames
    # cut and pad
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]

    if fbank.size(-1) % 2 != 0:
        fbank = fbank[..., :-1]

    return fbank


def pad_wav(waveform, segment_length):
    waveform_length = waveform.shape[-1]
    assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
    if segment_length is None or waveform_length == segment_length:
        return waveform
    elif waveform_length > segment_length:
        return waveform[:segment_length]
    elif waveform_length < segment_length:
        temp_wav = np.zeros((1, segment_length))
        temp_wav[:, :waveform_length] = waveform
    return temp_wav

def normalize_wav(waveform):
    waveform = waveform - np.mean(waveform)
    waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
    return waveform * 0.5


def read_wav_file(filename, segment_length):
    # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
    waveform, sr = torchaudio.load(filename)  # Faster!!!
    waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
    waveform = waveform.numpy()[0, ...]
    waveform = normalize_wav(waveform)
    waveform = waveform[None, ...]
    waveform = pad_wav(waveform, segment_length)
    
    waveform = waveform / np.max(np.abs(waveform))
    waveform = 0.5 * waveform
    
    return waveform


def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
    assert fn_STFT is not None

    # mixup
    waveform = read_wav_file(filename, target_length * 160)  # hop size is 160

    waveform = waveform[0, ...]
    waveform = torch.FloatTensor(waveform)

    fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)

    fbank = torch.FloatTensor(fbank.T)
    log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)

    fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
        log_magnitudes_stft, target_length
    )

    return fbank, log_magnitudes_stft, waveform