File size: 38,816 Bytes
fd43906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import logging
import math
import os
import random
from pathlib import Path

import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import torch.utils.checkpoint
import transformers
from datasets import load_dataset
from flax import jax_utils
from flax.core.frozen_dict import unfreeze
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import create_repo, upload_folder
from PIL import Image
from torch.utils.data import IterableDataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed

from diffusers import (
    FlaxAutoencoderKL,
    FlaxControlNetModel,
    FlaxDDPMScheduler,
    FlaxStableDiffusionControlNetPipeline,
    FlaxUNet2DConditionModel,
)
from diffusers.utils import check_min_version, is_wandb_available


if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.15.0.dev0")

logger = logging.getLogger(__name__)


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_dtype):
    logger.info("Running validation... ")

    pipeline, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
        controlnet=controlnet,
        safety_checker=None,
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )
    params = jax_utils.replicate(params)
    params["controlnet"] = controlnet_params

    num_samples = jax.device_count()
    prng_seed = jax.random.split(rng, jax.device_count())

    if len(args.validation_image) == len(args.validation_prompt):
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt
    elif len(args.validation_image) == 1:
        validation_images = args.validation_image * len(args.validation_prompt)
        validation_prompts = args.validation_prompt
    elif len(args.validation_prompt) == 1:
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt * len(args.validation_image)
    else:
        raise ValueError(
            "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
        )

    image_logs = []

    for validation_prompt, validation_image in zip(validation_prompts, validation_images):
        prompts = num_samples * [validation_prompt]
        prompt_ids = pipeline.prepare_text_inputs(prompts)
        prompt_ids = shard(prompt_ids)

        validation_image = Image.open(validation_image).convert("RGB")
        processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
        processed_image = shard(processed_image)
        images = pipeline(
            prompt_ids=prompt_ids,
            image=processed_image,
            params=params,
            prng_seed=prng_seed,
            num_inference_steps=50,
            jit=True,
        ).images

        images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
        images = pipeline.numpy_to_pil(images)

        image_logs.append(
            {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
        )

    if args.report_to == "wandb":
        formatted_images = []
        for log in image_logs:
            images = log["images"]
            validation_prompt = log["validation_prompt"]
            validation_image = log["validation_image"]

            formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
            for image in images:
                image = wandb.Image(image, caption=validation_prompt)
                formatted_images.append(image)

        wandb.log({"validation": formatted_images})
    else:
        logger.warn(f"image logging not implemented for {args.report_to}")

    return image_logs


def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
    img_str = ""
    for i, log in enumerate(image_logs):
        images = log["images"]
        validation_prompt = log["validation_prompt"]
        validation_image = log["validation_image"]
        validation_image.save(os.path.join(repo_folder, "image_control.png"))
        img_str += f"prompt: {validation_prompt}\n"
        images = [validation_image] + images
        image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
        img_str += f"![images_{i})](./images_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
inference: true
---
    """
    model_card = f"""
# controlnet- {repo_id}

These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n
{img_str}
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--controlnet_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
        " If not specified controlnet weights are initialized from unet.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--from_pt",
        action="store_true",
        help="Load the pretrained model from a PyTorch checkpoint.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="controlnet-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=100,
        help=("log training metric every X steps to `--report_t`"),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.")
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
    )
    parser.add_argument(
        "--conditioning_image_column",
        type=str,
        default="conditioning_image",
        help="The column of the dataset containing the controlnet conditioning image.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set. Needed if `streaming` is set to True."
        ),
    )
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
            " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
            " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
        ),
    )
    parser.add_argument(
        "--validation_image",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
            " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
            " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
            " `--validation_image` that will be used with all `--validation_prompt`s."
        ),
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` and logging the images."
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="train_controlnet_flax",
        help=("The `project` argument passed to wandb"),
    )
    parser.add_argument(
        "--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over"
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Need either a dataset name or a training folder.")
    if args.dataset_name is not None and args.train_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")

    if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
        raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")

    if args.validation_prompt is not None and args.validation_image is None:
        raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")

    if args.validation_prompt is None and args.validation_image is not None:
        raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")

    if (
        args.validation_image is not None
        and args.validation_prompt is not None
        and len(args.validation_image) != 1
        and len(args.validation_prompt) != 1
        and len(args.validation_image) != len(args.validation_prompt)
    ):
        raise ValueError(
            "Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
            " or the same number of `--validation_prompt`s and `--validation_image`s"
        )

    # This idea comes from
    # https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370
    if args.streaming and args.max_train_samples is None:
        raise ValueError("You must specify `max_train_samples` when using dataset streaming.")

    return args


def make_train_dataset(args, tokenizer, batch_size=None):
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            streaming=args.streaming,
        )
    else:
        if args.train_data_dir is not None:
            dataset = load_dataset(
                args.train_data_dir,
                cache_dir=args.cache_dir,
            )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if isinstance(dataset["train"], IterableDataset):
        column_names = next(iter(dataset["train"])).keys()
    else:
        column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    if args.image_column is None:
        image_column = column_names[0]
        logger.info(f"image column defaulting to {image_column}")
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.caption_column is None:
        caption_column = column_names[1]
        logger.info(f"caption column defaulting to {caption_column}")
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.conditioning_image_column is None:
        conditioning_image_column = column_names[2]
        logger.info(f"conditioning image column defaulting to {caption_column}")
    else:
        conditioning_image_column = args.conditioning_image_column
        if conditioning_image_column not in column_names:
            raise ValueError(
                f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    def tokenize_captions(examples, is_train=True):
        captions = []
        for caption in examples[caption_column]:
            if random.random() < args.proportion_empty_prompts:
                captions.append("")
            elif isinstance(caption, str):
                captions.append(caption)
            elif isinstance(caption, (list, np.ndarray)):
                # take a random caption if there are multiple
                captions.append(random.choice(caption) if is_train else caption[0])
            else:
                raise ValueError(
                    f"Caption column `{caption_column}` should contain either strings or lists of strings."
                )
        inputs = tokenizer(
            captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        return inputs.input_ids

    image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    conditioning_image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.ToTensor(),
        ]
    )

    def preprocess_train(examples):
        images = [image.convert("RGB") for image in examples[image_column]]
        images = [image_transforms(image) for image in images]

        conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
        conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]

        examples["pixel_values"] = images
        examples["conditioning_pixel_values"] = conditioning_images
        examples["input_ids"] = tokenize_captions(examples)

        return examples

    if jax.process_index() == 0:
        if args.max_train_samples is not None:
            if args.streaming:
                dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples)
            else:
                dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        if args.streaming:
            train_dataset = dataset["train"].map(
                preprocess_train,
                batched=True,
                batch_size=batch_size,
                remove_columns=list(dataset["train"].features.keys()),
            )
        else:
            train_dataset = dataset["train"].with_transform(preprocess_train)

    return train_dataset


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
    conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.stack([example["input_ids"] for example in examples])

    batch = {
        "pixel_values": pixel_values,
        "conditioning_pixel_values": conditioning_pixel_values,
        "input_ids": input_ids,
    }
    batch = {k: v.numpy() for k, v in batch.items()}
    return batch


def get_params_to_save(params):
    return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))


def main():
    args = parse_args()

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # wandb init
    if jax.process_index() == 0 and args.report_to == "wandb":
        wandb.init(
            project=args.tracker_project_name,
            job_type="train",
            config=args,
        )

    if args.seed is not None:
        set_seed(args.seed)

    rng = jax.random.PRNGKey(0)

    # Handle the repository creation
    if jax.process_index() == 0:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load the tokenizer and add the placeholder token as a additional special token
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
        tokenizer = CLIPTokenizer.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
        )
    else:
        raise NotImplementedError("No tokenizer specified!")

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps
    train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=not args.streaming,
        collate_fn=collate_fn,
        batch_size=total_train_batch_size,
        num_workers=args.dataloader_num_workers,
        drop_last=True,
    )

    weight_dtype = jnp.float32
    if args.mixed_precision == "fp16":
        weight_dtype = jnp.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = jnp.bfloat16

    # Load models and create wrapper for stable diffusion
    text_encoder = FlaxCLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )
    vae, vae_params = FlaxAutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        revision=args.revision,
        subfolder="vae",
        dtype=weight_dtype,
        from_pt=args.from_pt,
    )
    unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )

    if args.controlnet_model_name_or_path:
        logger.info("Loading existing controlnet weights")
        controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
            args.controlnet_model_name_or_path, from_pt=True, dtype=jnp.float32
        )
    else:
        logger.info("Initializing controlnet weights from unet")
        rng, rng_params = jax.random.split(rng)

        controlnet = FlaxControlNetModel(
            in_channels=unet.config.in_channels,
            down_block_types=unet.config.down_block_types,
            only_cross_attention=unet.config.only_cross_attention,
            block_out_channels=unet.config.block_out_channels,
            layers_per_block=unet.config.layers_per_block,
            attention_head_dim=unet.config.attention_head_dim,
            cross_attention_dim=unet.config.cross_attention_dim,
            use_linear_projection=unet.config.use_linear_projection,
            flip_sin_to_cos=unet.config.flip_sin_to_cos,
            freq_shift=unet.config.freq_shift,
        )
        controlnet_params = controlnet.init_weights(rng=rng_params)
        controlnet_params = unfreeze(controlnet_params)
        for key in [
            "conv_in",
            "time_embedding",
            "down_blocks_0",
            "down_blocks_1",
            "down_blocks_2",
            "down_blocks_3",
            "mid_block",
        ]:
            controlnet_params[key] = unet_params[key]

    # Optimization
    if args.scale_lr:
        args.learning_rate = args.learning_rate * total_train_batch_size

    constant_scheduler = optax.constant_schedule(args.learning_rate)

    adamw = optax.adamw(
        learning_rate=constant_scheduler,
        b1=args.adam_beta1,
        b2=args.adam_beta2,
        eps=args.adam_epsilon,
        weight_decay=args.adam_weight_decay,
    )

    optimizer = optax.chain(
        optax.clip_by_global_norm(args.max_grad_norm),
        adamw,
    )

    state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer)

    noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler"
    )

    # Initialize our training
    validation_rng, train_rngs = jax.random.split(rng)
    train_rngs = jax.random.split(train_rngs, jax.local_device_count())

    def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng):
        # reshape batch, add grad_step_dim if gradient_accumulation_steps > 1
        if args.gradient_accumulation_steps > 1:
            grad_steps = args.gradient_accumulation_steps
            batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch)

        def compute_loss(params, minibatch, sample_rng):
            # Convert images to latent space
            vae_outputs = vae.apply(
                {"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode
            )
            latents = vae_outputs.latent_dist.sample(sample_rng)
            # (NHWC) -> (NCHW)
            latents = jnp.transpose(latents, (0, 3, 1, 2))
            latents = latents * vae.config.scaling_factor

            # Sample noise that we'll add to the latents
            noise_rng, timestep_rng = jax.random.split(sample_rng)
            noise = jax.random.normal(noise_rng, latents.shape)
            # Sample a random timestep for each image
            bsz = latents.shape[0]
            timesteps = jax.random.randint(
                timestep_rng,
                (bsz,),
                0,
                noise_scheduler.config.num_train_timesteps,
            )

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)

            # Get the text embedding for conditioning
            encoder_hidden_states = text_encoder(
                minibatch["input_ids"],
                params=text_encoder_params,
                train=False,
            )[0]

            controlnet_cond = minibatch["conditioning_pixel_values"]

            # Predict the noise residual and compute loss
            down_block_res_samples, mid_block_res_sample = controlnet.apply(
                {"params": params},
                noisy_latents,
                timesteps,
                encoder_hidden_states,
                controlnet_cond,
                train=True,
                return_dict=False,
            )

            model_pred = unet.apply(
                {"params": unet_params},
                noisy_latents,
                timesteps,
                encoder_hidden_states,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            loss = (target - model_pred) ** 2
            loss = loss.mean()

            return loss

        grad_fn = jax.value_and_grad(compute_loss)

        # get a minibatch (one gradient accumulation slice)
        def get_minibatch(batch, grad_idx):
            return jax.tree_util.tree_map(
                lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
                batch,
            )

        def loss_and_grad(grad_idx, train_rng):
            # create minibatch for the grad step
            minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch
            sample_rng, train_rng = jax.random.split(train_rng, 2)
            loss, grad = grad_fn(state.params, minibatch, sample_rng)
            return loss, grad, train_rng

        if args.gradient_accumulation_steps == 1:
            loss, grad, new_train_rng = loss_and_grad(None, train_rng)
        else:
            init_loss_grad_rng = (
                0.0,  # initial value for cumul_loss
                jax.tree_map(jnp.zeros_like, state.params),  # initial value for cumul_grad
                train_rng,  # initial value for train_rng
            )

            def cumul_grad_step(grad_idx, loss_grad_rng):
                cumul_loss, cumul_grad, train_rng = loss_grad_rng
                loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng)
                cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad))
                return cumul_loss, cumul_grad, new_train_rng

            loss, grad, new_train_rng = jax.lax.fori_loop(
                0,
                args.gradient_accumulation_steps,
                cumul_grad_step,
                init_loss_grad_rng,
            )
            loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad))

        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad)

        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state, metrics, new_train_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)
    unet_params = jax_utils.replicate(unet_params)
    text_encoder_params = jax_utils.replicate(text_encoder.params)
    vae_params = jax_utils.replicate(vae_params)

    # Train!
    if args.streaming:
        dataset_length = args.max_train_samples
    else:
        dataset_length = len(train_dataloader)
    num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps)

    # Scheduler and math around the number of training steps.
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
    logger.info(f"  Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}")

    if jax.process_index() == 0:
        wandb.define_metric("*", step_metric="train/step")
        wandb.config.update(
            {
                "num_train_examples": args.max_train_samples if args.streaming else len(train_dataset),
                "total_train_batch_size": total_train_batch_size,
                "total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch,
                "num_devices": jax.device_count(),
            }
        )

    global_step = 0
    epochs = tqdm(
        range(args.num_train_epochs),
        desc="Epoch ... ",
        position=0,
        disable=jax.process_index() > 0,
    )
    for epoch in epochs:
        # ======================== Training ================================

        train_metrics = []

        steps_per_epoch = (
            args.max_train_samples // total_train_batch_size
            if args.streaming
            else len(train_dataset) // total_train_batch_size
        )
        train_step_progress_bar = tqdm(
            total=steps_per_epoch,
            desc="Training...",
            position=1,
            leave=False,
            disable=jax.process_index() > 0,
        )
        # train
        for batch in train_dataloader:
            batch = shard(batch)
            state, train_metric, train_rngs = p_train_step(
                state, unet_params, text_encoder_params, vae_params, batch, train_rngs
            )
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

            global_step += 1
            if global_step >= args.max_train_steps:
                break

            if (
                args.validation_prompt is not None
                and global_step % args.validation_steps == 0
                and jax.process_index() == 0
            ):
                _ = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype)

            if global_step % args.logging_steps == 0 and jax.process_index() == 0:
                if args.report_to == "wandb":
                    wandb.log(
                        {
                            "train/step": global_step,
                            "train/epoch": epoch,
                            "train/loss": jax_utils.unreplicate(train_metric)["loss"],
                        }
                    )

        train_metric = jax_utils.unreplicate(train_metric)
        train_step_progress_bar.close()
        epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")

    # Create the pipeline using using the trained modules and save it.
    if jax.process_index() == 0:
        if args.validation_prompt is not None:
            image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype)

        controlnet.save_pretrained(
            args.output_dir,
            params=get_params_to_save(state.params),
        )

        if args.push_to_hub:
            save_model_card(
                repo_id,
                image_logs=image_logs,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )


if __name__ == "__main__":
    main()