Commit
9a3ee3f
1 Parent(s): f3c4aae

Format choice (#2)

Browse files

- Format choice (4ac316562c9f8dee9855203fa97ac3b38a659c26)


Co-authored-by: Fabrice TIERCELIN <[email protected]>

Files changed (1) hide show
  1. app.py +18 -10
app.py CHANGED
@@ -7,6 +7,7 @@ from huggingface_hub import snapshot_download
7
  from models import AudioDiffusion, DDPMScheduler
8
  from audioldm.audio.stft import TacotronSTFT
9
  from audioldm.variational_autoencoder import AutoencoderKL
 
10
  from gradio import Markdown
11
  import spaces
12
 
@@ -83,18 +84,24 @@ tango.stft.to(device_type)
83
  tango.model.to(device_type)
84
 
85
  @spaces.GPU(duration=120)
86
- def gradio_generate(prompt, steps, guidance):
87
  output_wave = tango.generate(prompt, steps, guidance)
88
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
89
 
90
- output_filename_1 = "tmp1_.wav"
91
- wavio.write(output_filename_1, output_wave[0], rate=16000, sampwidth=2)
 
 
 
 
92
 
93
- output_filename_2 = "tmp2_.wav"
94
- wavio.write(output_filename_2, output_wave[1], rate=16000, sampwidth=2)
95
-
96
- output_filename_3 = "tmp3_.wav"
97
- wavio.write(output_filename_3, output_wave[2], rate=16000, sampwidth=2)
 
 
98
 
99
  return [output_filename_1, output_filename_2, output_filename_3]
100
 
@@ -118,13 +125,14 @@ def gradio_generate(prompt, steps, guidance):
118
  # <p/>
119
  # """
120
  description_text = """
121
- <p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
122
  Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
123
  <br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
124
  <p/>
125
  """
126
  # Gradio input and output components
127
  input_text = gr.Textbox(lines=2, label="Prompt")
 
128
  output_audio_1 = gr.Audio(label="Generated Audio #1/3", type="filepath")
129
  output_audio_2 = gr.Audio(label="Generated Audio #2/3", type="filepath")
130
  output_audio_3 = gr.Audio(label="Generated Audio #3/3", type="filepath")
@@ -134,7 +142,7 @@ guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guid
134
  # Gradio interface
135
  gr_interface = gr.Interface(
136
  fn=gradio_generate,
137
- inputs=[input_text, denoising_steps, guidance_scale],
138
  outputs=[output_audio_1, output_audio_2, output_audio_3],
139
  title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
140
  description=description_text,
 
7
  from models import AudioDiffusion, DDPMScheduler
8
  from audioldm.audio.stft import TacotronSTFT
9
  from audioldm.variational_autoencoder import AutoencoderKL
10
+ from pydub import AudioSegment
11
  from gradio import Markdown
12
  import spaces
13
 
 
84
  tango.model.to(device_type)
85
 
86
  @spaces.GPU(duration=120)
87
+ def gradio_generate(prompt, output_format, steps, guidance):
88
  output_wave = tango.generate(prompt, steps, guidance)
89
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
90
 
91
+ output_filename_1 = "tmp1.wav"
92
+ wavio.write(output_filename_1, output_wave, rate=16000, sampwidth=2)
93
+ output_filename_2 = "tmp2.wav"
94
+ wavio.write(output_filename_2, output_wave, rate=16000, sampwidth=2)
95
+ output_filename_3 = "tmp3.wav"
96
+ wavio.write(output_filename_3, output_wave, rate=16000, sampwidth=2)
97
 
98
+ if (output_format == "mp3"):
99
+ AudioSegment.from_wav("tmp1.wav").export("tmp1.mp3", format = "mp3")
100
+ output_filename_1 = "tmp1.mp3"
101
+ AudioSegment.from_wav("tmp2.wav").export("tmp2.mp3", format = "mp3")
102
+ output_filename_2 = "tmp2.mp3"
103
+ AudioSegment.from_wav("tmp3.wav").export("tmp3.mp3", format = "mp3")
104
+ output_filename_3 = "tmp3.mp3"
105
 
106
  return [output_filename_1, output_filename_2, output_filename_3]
107
 
 
125
  # <p/>
126
  # """
127
  description_text = """
128
+ <p><a href="https://huggingface.co/spaces/declare-lab/tango2-full/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
129
  Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
130
  <br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
131
  <p/>
132
  """
133
  # Gradio input and output components
134
  input_text = gr.Textbox(lines=2, label="Prompt")
135
+ output_format = gr.Radio(label = "Output format", info = "The file you can download", choices = ["mp3", "wav"], value = "wav")
136
  output_audio_1 = gr.Audio(label="Generated Audio #1/3", type="filepath")
137
  output_audio_2 = gr.Audio(label="Generated Audio #2/3", type="filepath")
138
  output_audio_3 = gr.Audio(label="Generated Audio #3/3", type="filepath")
 
142
  # Gradio interface
143
  gr_interface = gr.Interface(
144
  fn=gradio_generate,
145
+ inputs=[input_text, output_format, denoising_steps, guidance_scale],
146
  outputs=[output_audio_1, output_audio_2, output_audio_3],
147
  title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
148
  description=description_text,