tango2 / diffusers /tests /pipelines /spectrogram_diffusion /test_spectrogram_diffusion.py
deepanway's picture
add required files
6b448ad
raw
history blame
7.53 kB
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder
from diffusers.utils import require_torch_gpu, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import require_note_seq, require_onnxruntime
from ...pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
MIDI_FILE = "./tests/fixtures/elise_format0.mid"
class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SpectrogramDiffusionPipeline
required_optional_params = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
test_attention_slicing = False
test_cpu_offload = False
batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS
params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
notes_encoder = SpectrogramNotesEncoder(
max_length=2048,
vocab_size=1536,
d_model=768,
dropout_rate=0.1,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
feed_forward_proj="gated-gelu",
)
continuous_encoder = SpectrogramContEncoder(
input_dims=128,
targets_context_length=256,
d_model=768,
dropout_rate=0.1,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
feed_forward_proj="gated-gelu",
)
decoder = T5FilmDecoder(
input_dims=128,
targets_length=256,
max_decoder_noise_time=20000.0,
d_model=768,
num_layers=1,
num_heads=1,
d_kv=4,
d_ff=2048,
dropout_rate=0.1,
)
scheduler = DDPMScheduler()
components = {
"notes_encoder": notes_encoder.eval(),
"continuous_encoder": continuous_encoder.eval(),
"decoder": decoder.eval(),
"scheduler": scheduler,
"melgan": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"input_tokens": [
[1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033
],
"generator": generator,
"num_inference_steps": 4,
"output_type": "mel",
}
return inputs
def test_spectrogram_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = SpectrogramDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
mel = output.audios
mel_slice = mel[0, -3:, -3:]
assert mel_slice.shape == (3, 3)
expected_slice = np.array(
[-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0]
)
assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
pass
def test_inference_batch_consistent(self):
pass
@skip_mps
def test_progress_bar(self):
return super().test_progress_bar()
@slow
@require_torch_gpu
@require_onnxruntime
@require_note_seq
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_callback(self):
# TODO - test that pipeline can decode tokens in a callback
# so that music can be played live
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
melgan = pipe.melgan
pipe.melgan = None
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
def callback(step, mel_output):
# decode mel to audio
audio = melgan(input_features=mel_output.astype(np.float32))[0]
assert len(audio[0]) == 81920 * (step + 1)
# simulate that audio is played
return audio
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
input_tokens = input_tokens[:3]
generator = torch.manual_seed(0)
pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel")
def test_spectrogram_fast(self):
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
# just run two denoising loops
input_tokens = input_tokens[:2]
generator = torch.manual_seed(0)
output = pipe(input_tokens, num_inference_steps=2, generator=generator)
audio = output.audios[0]
assert abs(np.abs(audio).sum() - 3612.841) < 1e-1
def test_spectrogram(self):
device = torch_device
pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
processor = MidiProcessor()
input_tokens = processor(MIDI_FILE)
# just run 4 denoising loops
input_tokens = input_tokens[:4]
generator = torch.manual_seed(0)
output = pipe(input_tokens, num_inference_steps=100, generator=generator)
audio = output.audios[0]
assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2