decodingdatascience commited on
Commit
9d2fdc3
·
1 Parent(s): 6278b5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -20
app.py CHANGED
@@ -1,6 +1,9 @@
 
 
 
1
  from dotenv import load_dotenv
2
 
3
- load_dotenv()
4
 
5
  import streamlit as st
6
  import os
@@ -8,38 +11,42 @@ import pathlib
8
  import textwrap
9
  from PIL import Image
10
 
 
11
  import google.generativeai as genai
12
 
13
- os.getenv("GOOGLE_API_KEYS")
14
- genai.configure(api_keys = os.getenv("GOOGLE_API_KEYS"))
15
 
16
- #function to load genai model and get response
 
 
 
17
 
18
- def get_gemini_response(input,image)
19
  model = genai.GenerativeModel('gemini-pro-vision')
20
  if input!="":
21
- response = model.generate_content([input,image])
22
  else:
23
- response = model.generate_content(image)
24
- return response.text
25
 
 
26
 
27
- ##streamlit
28
 
29
- st.header("Decoding Data Science image Recognition Demo")
30
- input = st.text_input("Input Prompt", key="input")
31
- uploaded_file = st.file_uploader("Choose an Image..", type=["jpg","jpeg","png"])
32
-
33
- image = ""
34
  if uploaded_file is not None:
35
- image=Image.open(uploaded_file)
36
- st.image(image, caption="Uploaded Image", use_column_width=True)
 
37
 
38
  submit=st.button("Tell me about the image")
39
 
 
40
 
41
  if submit:
42
- response= get_gemini_response(input,image)
43
- st.subheader("The Image Response is")
44
- st.write(response)
45
-
 
1
+ # Q&A Chatbot
2
+ #from langchain.llms import OpenAI
3
+
4
  from dotenv import load_dotenv
5
 
6
+ load_dotenv() # take environment variables from .env.
7
 
8
  import streamlit as st
9
  import os
 
11
  import textwrap
12
  from PIL import Image
13
 
14
+
15
  import google.generativeai as genai
16
 
 
 
17
 
18
+ os.getenv("GOOGLE_API_KEY")
19
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
20
+
21
+ ## Function to load OpenAI model and get respones
22
 
23
+ def get_gemini_response(input,image):
24
  model = genai.GenerativeModel('gemini-pro-vision')
25
  if input!="":
26
+ response = model.generate_content([input,image])
27
  else:
28
+ response = model.generate_content(image)
29
+ return response.text
30
 
31
+ ##initialize our streamlit app
32
 
33
+ st.set_page_config(page_title="Gemini Image Demo")
34
 
35
+ st.header("Decoding Data Science Gemini Application")
36
+ input=st.text_input("Input Prompt: ",key="input")
37
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
38
+ image=""
 
39
  if uploaded_file is not None:
40
+ image = Image.open(uploaded_file)
41
+ st.image(image, caption="Uploaded Image.", use_column_width=True)
42
+
43
 
44
  submit=st.button("Tell me about the image")
45
 
46
+ ## If ask button is clicked
47
 
48
  if submit:
49
+
50
+ response=get_gemini_response(input,image)
51
+ st.subheader("The Response is")
52
+ st.write(response)