llm-rag / app.py
decodingdatascience's picture
Update app.py
60abb2d verified
raw
history blame contribute delete
867 Bytes
import gradio as gr
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
# Load documents and build the index
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
# Define the function that handles the query
def query_document(query):
response = query_engine.query(query)
return str(response)
# Create a simple Gradio interface
interface = gr.Interface(
fn=query_document,
inputs=gr.Textbox(label="Enter your question", lines=2, placeholder="What do you want to know from the documents?"),
outputs=gr.Textbox(label="Answer"),
title="Document Q&A with LlamaIndex",
description="Ask a question and get an answer based on documents stored in the 'data' folder."
)
# Launch the app
if __name__ == "__main__":
interface.launch()