Spaces:
Sleeping
Sleeping
import gradio as gr | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader | |
# Load documents and build the index | |
documents = SimpleDirectoryReader("data").load_data() | |
index = VectorStoreIndex.from_documents(documents) | |
query_engine = index.as_query_engine() | |
# Define the function that handles the query | |
def query_document(query): | |
response = query_engine.query(query) | |
return str(response) | |
# Create a simple Gradio interface | |
interface = gr.Interface( | |
fn=query_document, | |
inputs=gr.Textbox(label="Enter your question", lines=2, placeholder="What do you want to know from the documents?"), | |
outputs=gr.Textbox(label="Answer"), | |
title="Document Q&A with LlamaIndex", | |
description="Ask a question and get an answer based on documents stored in the 'data' folder." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |