import gradio as gr from llama_index.core import VectorStoreIndex, SimpleDirectoryReader # Load documents from "data" directory and build the index documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents=documents) query_engine = index.as_query_engine() # Function to handle user queries def query_document(query): response = query_engine.query(query) return str(response) # Build Gradio app using Blocks for better layout and UX with gr.Blocks(css=".gradio-container {font-family: 'Arial'; background-color: #fafafa;}") as demo: gr.Markdown("

📄 RAG Application with LlamaIndex

") gr.Markdown( "Ask questions about the documents stored in the local directory. " "This app uses Retrieval-Augmented Generation (RAG) powered by LlamaIndex." ) with gr.Box(): query_input = gr.Textbox( label="Enter your query", placeholder="e.g., What is the refund policy mentioned in the document?", lines=3 ) submit_btn = gr.Button("Submit", variant="primary") response_output = gr.Textbox(label="Response", lines=8) submit_btn.click(fn=query_document, inputs=query_input, outputs=response_output) # Run the app if __name__ == "__main__": demo.launch()