Spaces:
Running
Running
fix gradio interface
Browse files
app.py
CHANGED
@@ -23,7 +23,8 @@ R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
|
|
23 |
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
|
24 |
|
25 |
# Validate that required environment variables are set
|
26 |
-
if not all([R2_ASL_VIDEOS_URL, R2_ENDPOINT, R2_ACCESS_KEY_ID,
|
|
|
27 |
raise ValueError(
|
28 |
"Missing required R2 environment variables. "
|
29 |
"Please check your .env file."
|
@@ -54,15 +55,17 @@ s3 = session.client(
|
|
54 |
)
|
55 |
|
56 |
def clean_gloss_token(token):
|
57 |
-
"""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
# Remove extra whitespace
|
63 |
cleaned = re.sub(r'\s+', ' ', cleaned).strip()
|
64 |
-
|
65 |
-
return cleaned
|
66 |
|
67 |
|
68 |
def upload_video_to_r2(video_path, bucket_name="asl-videos"):
|
@@ -84,8 +87,10 @@ def upload_video_to_r2(video_path, bucket_name="asl-videos"):
|
|
84 |
)
|
85 |
|
86 |
# Replace the endpoint with the domain for uploading
|
87 |
-
public_domain = R2_ENDPOINT.replace('https://', '')
|
88 |
-
|
|
|
|
|
89 |
|
90 |
print(f"Video uploaded to R2: {video_url}")
|
91 |
public_video_url = f"{R2_ASL_VIDEOS_URL}/{unique_filename}"
|
@@ -150,52 +155,24 @@ def cleanup_temp_video(file_path):
|
|
150 |
print(f"Error cleaning up file: {e}")
|
151 |
|
152 |
|
153 |
-
def process_text_to_gloss(text):
|
154 |
-
"""
|
155 |
-
Convert text directly to ASL gloss
|
156 |
-
"""
|
157 |
-
try:
|
158 |
-
# For text input, we can use a simpler approach or call the
|
159 |
-
# document converter with a temporary text file
|
160 |
-
import tempfile
|
161 |
-
|
162 |
-
# Create a temporary text file
|
163 |
-
with tempfile.NamedTemporaryFile(
|
164 |
-
mode='w', suffix='.txt', delete=False
|
165 |
-
) as temp_file:
|
166 |
-
temp_file.write(text)
|
167 |
-
temp_file_path = temp_file.name
|
168 |
-
|
169 |
-
# Use the existing document converter
|
170 |
-
gloss = asl_converter.convert_document(temp_file_path)
|
171 |
-
|
172 |
-
# Clean up the temporary file
|
173 |
-
os.unlink(temp_file_path)
|
174 |
-
|
175 |
-
return gloss
|
176 |
-
except Exception as e:
|
177 |
-
print(f"Error processing text: {e}")
|
178 |
-
return None
|
179 |
-
|
180 |
-
|
181 |
def process_input(input_data):
|
182 |
-
"""
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
194 |
else:
|
195 |
-
|
196 |
-
|
197 |
-
f"{input_data[:100]}...")
|
198 |
-
return process_text_to_gloss(input_data)
|
199 |
|
200 |
|
201 |
async def parse_vectorize_and_search_unified(input_data):
|
@@ -210,7 +187,7 @@ async def parse_vectorize_and_search_unified(input_data):
|
|
210 |
return {
|
211 |
"status": "error",
|
212 |
"message": "Failed to process input"
|
213 |
-
}, None
|
214 |
|
215 |
print("ASL", gloss)
|
216 |
|
@@ -264,44 +241,25 @@ async def parse_vectorize_and_search_unified(input_data):
|
|
264 |
stitched_video_path = video_files[0]
|
265 |
|
266 |
# Upload final video to R2 and get public URL
|
267 |
-
|
268 |
if stitched_video_path:
|
269 |
-
|
270 |
-
#
|
271 |
-
cleanup_temp_video(stitched_video_path)
|
272 |
|
273 |
# Clean up individual video files after stitching
|
274 |
for video_file in video_files:
|
275 |
if video_file != stitched_video_path: # Don't delete the final output
|
276 |
cleanup_temp_video(video_file)
|
277 |
|
278 |
-
#
|
279 |
-
download_html = ""
|
280 |
-
if final_video_url:
|
281 |
-
download_html = f"""
|
282 |
-
<div style="text-align: center; padding: 20px;">
|
283 |
-
<h3>Download Your ASL Video</h3>
|
284 |
-
<a href="{final_video_url}" download="asl_video.mp4"
|
285 |
-
style="background-color: #4CAF50; color: white;
|
286 |
-
padding: 12px 24px; text-decoration: none;
|
287 |
-
border-radius: 4px; display: inline-block;">
|
288 |
-
Download Video
|
289 |
-
</a>
|
290 |
-
<p style="margin-top: 10px; color: #666;">
|
291 |
-
<small>Right-click and "Save As" if the download doesn't
|
292 |
-
start automatically</small>
|
293 |
-
</p>
|
294 |
-
</div>
|
295 |
-
"""
|
296 |
-
|
297 |
return {
|
298 |
"status": "success",
|
299 |
"videos": videos,
|
300 |
"video_count": len(videos),
|
301 |
"gloss": gloss,
|
302 |
"cleaned_tokens": cleaned_tokens,
|
303 |
-
"
|
304 |
-
},
|
305 |
|
306 |
|
307 |
def parse_vectorize_and_search_unified_sync(input_data):
|
@@ -317,10 +275,35 @@ def predict_unified(input_data):
|
|
317 |
return {
|
318 |
"status": "error",
|
319 |
"message": "Please provide text or upload a document"
|
320 |
-
}, None
|
321 |
|
322 |
# Use the unified processing function
|
323 |
result = parse_vectorize_and_search_unified_sync(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
return result
|
325 |
|
326 |
except Exception as e:
|
@@ -328,90 +311,59 @@ def predict_unified(input_data):
|
|
328 |
return {
|
329 |
"status": "error",
|
330 |
"message": f"An error occurred: {str(e)}"
|
331 |
-
}, None
|
332 |
|
333 |
|
334 |
# Create the Gradio interface
|
335 |
def create_interface():
|
336 |
"""Create and configure the Gradio interface"""
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
max_lines=10
|
354 |
-
)
|
355 |
-
|
356 |
-
gr.Markdown("### Option 2: Upload Document")
|
357 |
-
file_input = gr.File(
|
358 |
-
label="Upload Document (pdf, txt, docx, or epub)",
|
359 |
-
file_types=[".pdf", ".txt", ".docx", ".epub"]
|
360 |
-
)
|
361 |
-
|
362 |
-
# Processing options
|
363 |
-
gr.Markdown("## Processing Options")
|
364 |
-
use_r2 = gr.Checkbox(
|
365 |
-
label="Use Cloud Storage (R2)",
|
366 |
-
value=True,
|
367 |
-
info=("Upload video to cloud storage for "
|
368 |
-
"persistent access")
|
369 |
-
)
|
370 |
-
|
371 |
-
process_btn = gr.Button(
|
372 |
-
"Generate ASL Video",
|
373 |
-
variant="primary"
|
374 |
-
)
|
375 |
-
|
376 |
-
with gr.Column():
|
377 |
-
# Output section
|
378 |
-
gr.Markdown("## Results")
|
379 |
-
json_output = gr.JSON(label="Processing Results")
|
380 |
-
video_output = gr.Video(label="ASL Video Output")
|
381 |
-
download_html = gr.HTML(label="Download Link")
|
382 |
-
|
383 |
-
# Handle the processing
|
384 |
-
def process_inputs(text, file, use_r2_storage):
|
385 |
-
# Determine which input to use
|
386 |
-
if text and text.strip():
|
387 |
-
# Use text input
|
388 |
-
input_data = text.strip()
|
389 |
-
elif file is not None:
|
390 |
-
# Use file input
|
391 |
-
input_data = file
|
392 |
-
else:
|
393 |
-
# No input provided
|
394 |
-
return {
|
395 |
-
"status": "error",
|
396 |
-
"message": "Please provide either text or upload a file"
|
397 |
-
}, None, ""
|
398 |
-
|
399 |
-
# Process using the unified function
|
400 |
-
return predict_unified(input_data)
|
401 |
-
|
402 |
-
process_btn.click(
|
403 |
-
fn=process_inputs,
|
404 |
-
inputs=[text_input, file_input, use_r2],
|
405 |
-
outputs=[json_output, video_output, download_html]
|
406 |
-
)
|
407 |
|
408 |
-
#
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
return
|
412 |
|
413 |
|
414 |
-
# For Hugging Face Spaces, use the
|
415 |
if __name__ == "__main__":
|
416 |
demo = create_interface()
|
417 |
demo.launch(
|
|
|
23 |
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
|
24 |
|
25 |
# Validate that required environment variables are set
|
26 |
+
if not all([R2_ASL_VIDEOS_URL, R2_ENDPOINT, R2_ACCESS_KEY_ID,
|
27 |
+
R2_SECRET_ACCESS_KEY]):
|
28 |
raise ValueError(
|
29 |
"Missing required R2 environment variables. "
|
30 |
"Please check your .env file."
|
|
|
55 |
)
|
56 |
|
57 |
def clean_gloss_token(token):
|
58 |
+
"""Clean a single gloss token"""
|
59 |
+
if not token:
|
60 |
+
return None
|
61 |
+
|
62 |
+
# Remove punctuation and convert to lowercase
|
63 |
+
cleaned = re.sub(r'[^\w\s]', '', token).lower().strip()
|
64 |
+
|
65 |
# Remove extra whitespace
|
66 |
cleaned = re.sub(r'\s+', ' ', cleaned).strip()
|
67 |
+
|
68 |
+
return cleaned if cleaned else None
|
69 |
|
70 |
|
71 |
def upload_video_to_r2(video_path, bucket_name="asl-videos"):
|
|
|
87 |
)
|
88 |
|
89 |
# Replace the endpoint with the domain for uploading
|
90 |
+
public_domain = (R2_ENDPOINT.replace('https://', '')
|
91 |
+
.split('.')[0])
|
92 |
+
video_url = (f"https://{public_domain}.r2.cloudflarestorage.com/"
|
93 |
+
f"{bucket_name}/{unique_filename}")
|
94 |
|
95 |
print(f"Video uploaded to R2: {video_url}")
|
96 |
public_video_url = f"{R2_ASL_VIDEOS_URL}/{unique_filename}"
|
|
|
155 |
print(f"Error cleaning up file: {e}")
|
156 |
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
def process_input(input_data):
|
159 |
+
"""Process input data to extract text for ASL conversion"""
|
160 |
+
if isinstance(input_data, str):
|
161 |
+
# Direct text input
|
162 |
+
return input_data.strip()
|
163 |
+
elif hasattr(input_data, 'name'):
|
164 |
+
# File input - extract text from document
|
165 |
+
try:
|
166 |
+
print(f"Processing file: {input_data.name}")
|
167 |
+
gloss = asl_converter.convert_document(input_data.name)
|
168 |
+
print(f"Converted gloss: {gloss[:100]}...") # Show first 100 chars
|
169 |
+
return gloss
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error processing file: {e}")
|
172 |
+
return None
|
173 |
else:
|
174 |
+
print(f"Unsupported input type: {type(input_data)}")
|
175 |
+
return None
|
|
|
|
|
176 |
|
177 |
|
178 |
async def parse_vectorize_and_search_unified(input_data):
|
|
|
187 |
return {
|
188 |
"status": "error",
|
189 |
"message": "Failed to process input"
|
190 |
+
}, None
|
191 |
|
192 |
print("ASL", gloss)
|
193 |
|
|
|
241 |
stitched_video_path = video_files[0]
|
242 |
|
243 |
# Upload final video to R2 and get public URL
|
244 |
+
video_download_url = None
|
245 |
if stitched_video_path:
|
246 |
+
video_download_url = upload_video_to_r2(stitched_video_path)
|
247 |
+
# Don't clean up the local file yet - let frontend use it first
|
|
|
248 |
|
249 |
# Clean up individual video files after stitching
|
250 |
for video_file in video_files:
|
251 |
if video_file != stitched_video_path: # Don't delete the final output
|
252 |
cleanup_temp_video(video_file)
|
253 |
|
254 |
+
# Return simplified results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
return {
|
256 |
"status": "success",
|
257 |
"videos": videos,
|
258 |
"video_count": len(videos),
|
259 |
"gloss": gloss,
|
260 |
"cleaned_tokens": cleaned_tokens,
|
261 |
+
"video_download_url": video_download_url
|
262 |
+
}, stitched_video_path
|
263 |
|
264 |
|
265 |
def parse_vectorize_and_search_unified_sync(input_data):
|
|
|
275 |
return {
|
276 |
"status": "error",
|
277 |
"message": "Please provide text or upload a document"
|
278 |
+
}, None
|
279 |
|
280 |
# Use the unified processing function
|
281 |
result = parse_vectorize_and_search_unified_sync(input_data)
|
282 |
+
|
283 |
+
# Get the results
|
284 |
+
json_data, local_video_path = result
|
285 |
+
|
286 |
+
# If we have a local video path, use it directly for Gradio
|
287 |
+
if local_video_path and json_data.get("status") == "success":
|
288 |
+
# Schedule cleanup of the video file after a delay
|
289 |
+
# This gives Gradio time to load and display the video
|
290 |
+
import threading
|
291 |
+
import time
|
292 |
+
|
293 |
+
def delayed_cleanup(video_path):
|
294 |
+
time.sleep(30) # Wait 30 seconds before cleanup
|
295 |
+
cleanup_temp_video(video_path)
|
296 |
+
|
297 |
+
# Start cleanup thread
|
298 |
+
cleanup_thread = threading.Thread(
|
299 |
+
target=delayed_cleanup,
|
300 |
+
args=(local_video_path,)
|
301 |
+
)
|
302 |
+
cleanup_thread.daemon = True
|
303 |
+
cleanup_thread.start()
|
304 |
+
|
305 |
+
return json_data, local_video_path
|
306 |
+
|
307 |
return result
|
308 |
|
309 |
except Exception as e:
|
|
|
311 |
return {
|
312 |
"status": "error",
|
313 |
"message": f"An error occurred: {str(e)}"
|
314 |
+
}, None
|
315 |
|
316 |
|
317 |
# Create the Gradio interface
|
318 |
def create_interface():
|
319 |
"""Create and configure the Gradio interface"""
|
320 |
|
321 |
+
def process_inputs(text, file):
|
322 |
+
"""Process text or file input and return results"""
|
323 |
+
# Determine which input to use
|
324 |
+
if text and text.strip():
|
325 |
+
# Use text input
|
326 |
+
input_data = text.strip()
|
327 |
+
elif file is not None:
|
328 |
+
# Use file input
|
329 |
+
input_data = file
|
330 |
+
else:
|
331 |
+
# No input provided
|
332 |
+
return {
|
333 |
+
"status": "error",
|
334 |
+
"message": "Please provide either text or upload a file"
|
335 |
+
}, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
# Process using the unified function
|
338 |
+
return predict_unified(input_data)
|
339 |
+
|
340 |
+
# Create the interface
|
341 |
+
interface = gr.Interface(
|
342 |
+
fn=process_inputs,
|
343 |
+
inputs=[
|
344 |
+
gr.Textbox(
|
345 |
+
label="Enter text to convert to ASL",
|
346 |
+
placeholder="Type or paste your text here...",
|
347 |
+
lines=5
|
348 |
+
),
|
349 |
+
gr.File(
|
350 |
+
label="Upload Document (pdf, txt, docx, or epub)",
|
351 |
+
file_types=[".pdf", ".txt", ".docx", ".epub"]
|
352 |
+
)
|
353 |
+
],
|
354 |
+
outputs=[
|
355 |
+
gr.JSON(label="Results"),
|
356 |
+
gr.Video(label="ASL Video")
|
357 |
+
],
|
358 |
+
title=title,
|
359 |
+
description=description,
|
360 |
+
article=article
|
361 |
+
)
|
362 |
|
363 |
+
return interface
|
364 |
|
365 |
|
366 |
+
# For Hugging Face Spaces, use the Interface
|
367 |
if __name__ == "__main__":
|
368 |
demo = create_interface()
|
369 |
demo.launch(
|