Spaces:
Runtime error
Runtime error
File size: 8,168 Bytes
2ec702c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from init import *
import random
import numpy as np
from autograd.core.engine import Value
from autograd.core.nn import Neuron, Layer, MLP
from autograd.core.Graph import draw_dot
import time
from graphviz import Digraph
import imageio
from functools import partial
import matplotlib.animation as animation
import shutil
from IPython.display import HTML
import os
import pandas as pd
import plotly.subplots as sp
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation ,FFMpegWriter
import matplotlib.pyplot as plt
from uilit import *
os.environ["PATH"] += os.pathsep + './dev/lib/Python 3.11/site-packages/graphviz'
path_data = 'digit-recognizer/data/'
# loss function
def loss(model,X_train , y_train , batch_size=None):
# inline DataLoader :)
if batch_size is None:
Xb, yb = X_train, y_train
else:
ri = np.random.permutation(X_train.shape[0])[:batch_size]
Xb, yb = X_train[ri], y_train[ri]
inputs = [list(map(Value, xrow)) for xrow in Xb]
# forward the model to get scores
scores = list(map(model, inputs))
# svm "max-margin" loss
losses = [(1 + -yi*scorei).relu() for yi, scorei in zip(yb, scores)]
data_loss = sum(losses) * (1.0 / len(losses))
# L2 regularization
alpha = 0.05
reg_loss = alpha * sum((p*p for p in model.parameters()))
total_loss = data_loss + reg_loss
# also get accuracy
accuracy = [(yi > 0) == (scorei.data > 0) for yi, scorei in zip(yb, scores)]
return total_loss, sum(accuracy) / len(accuracy) ,scores
def Optimization_training_progress_realtime(Task,num_epoch, learning_rate ,num_layer,values_wieghts):
filename = f"assets/plot_res_{num_epoch-1}.png"
filename_ = f"assets/graph_wights_update_{num_epoch-1}.png"
if os.path.exists(filename) or os.path.exists(filename_):
shutil.rmtree('assets/')
os.makedirs('assets/')
# Create empty lists for loss and accuracy
loss_data = []
accuracy_data = []
model = MLP(int(num_layer), [int(values_wieghts),int(values_wieghts),1]) # 2-layer neural network
# Create subplots with shared x-axis
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, subplot_titles=("Loss", "Accuracy"))
# Initialize empty lists for loss and accuracy
loss_data = []
accuracy_data = []
# Create initial empty traces
loss_trace = go.Scatter(x=[], y=[], mode="lines", name="Loss")
accuracy_trace = go.Scatter(x=[], y=[], mode="lines", name="Accuracy")
# Add initial traces to the subplots
fig.add_trace(loss_trace, row=1, col=1)
fig.add_trace(accuracy_trace, row=2, col=1)
# Update layout
fig.update_layout(
title="Training Progress",
xaxis_title="Epoch",
yaxis=dict(title="Loss"),
yaxis2=dict(title="Accuracy"),
showlegend=False,
hovermode='x',
height=500,
width=500,
template='plotly_white'
)
# Define animation frames
frames = []
if Task in "Sparsity":
X_train , Y_train = initialize_data(n_samples=100 ,noise=0.1)
elif Task in "Classification":
FILES , _ = extract_path_df(path_data,10)
X_train, X_test, Y_train, Y_test = loading_df_to_numpy(FILES[0])
for k in range(int(num_epoch)):
# Forward pass
total_loss, acc,scores = loss(model, X_train, Y_train, batch_size=None)
# Backward pass
model.zero_grad()
total_loss.backward()
draw_dot(model(scores),f'graph_wights_update_{k}')
# Update (SGD)
learning_rate = 1.0 - 0.9 * k / 100
for p in model.parameters():
p.data -= learning_rate * p.grad
if k % 2 == 0:
print(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
# Append data to lists
loss_data.append(total_loss.data)
accuracy_data.append(acc)
# Update traces
with fig.batch_update():
fig.data[0].x = list(range(k+1))
fig.data[0].y = loss_data
fig.data[1].x = list(range(k+1))
fig.data[1].y = accuracy_data
# Append current frame to frames list
frames.append(go.Frame(data=[fig.data[0], fig.data[1]]))
if Task in "Sparsity":
h = 0.25
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Xmesh = np.c_[xx.ravel(), yy.ravel()]
inputs = [list(map(Value, xrow)) for xrow in Xmesh]
scores = list(map(model, inputs))
Z = np.array([s.data > 0 for s in scores])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.savefig(f'assets/plot_res_{k}.png')
# Add frames to animation
fig.frames = frames
nframes = int(num_epoch)
interval = int(num_epoch) * 2
# Create animation
animation = go.Figure(fig)
# Set animation settings
animation.update_layout(
updatemenus=[
{
"buttons": [
{
"args": [None, {"frame": {"duration": 500, "redraw": True},
"fromcurrent": True, "transition": {"duration": 0}}],
"label": "Play",
"method": "animate"
}
],
"showactive": False,
"type": "buttons"
}
]
)
# Display animation
# Save animation as GIF
if Task in "Sparsity":
graph_trace("graph_wights_update", nframes,interval)
fig_2 = plt.figure()
def animate_predicion(i):
im1 = plt.imread(f"assets/plot_res_{i}.png")
plt.imshow(im1)
plt.title(f"Epoch: {i+1}\nLoss: {loss_data[i]:.4f} - Accuracy: {accuracy_data[i]:.4f}")
plt.xlabel("prediction")
plt.axis('off')
fig_2.tight_layout()
lin_ani = FuncAnimation(fig_2, animate_predicion, frames=nframes, interval=200)
FFwriter = FFMpegWriter(fps=10)
lin_ani.save('out/training.mp4', writer=FFwriter)
# Display the animation
# Show the figure
return animation ,'out/training.mp4', 'out/Graph.mp4'
if Task in "Classification":
graph_trace("graph_wights_update", nframes,interval)
inputs_test = [list(map(Value, xrow)) for xrow in X_test]
predictions = [scorei.data.argmax() for scorei in list(map(model, inputs_test))]
# Plot a few examples
num_examples = 8
fig_1, axes = plt.subplots(2, 2, figsize=(12, 6))
fig_1.subplots_adjust(hspace=0.4, wspace=0.4)
def animate(i):
for j, ax in enumerate(axes.flatten()):
if j < num_examples:
random_index = random.randint(0, X_test.shape[1] - 1)
ax.imshow(X_test[:, random_index, None].reshape(28, 28), cmap="gray")
ax.set_title(f"Predicted: {Y_test[random_index]}")
ax.axis('off')
else:
ax.axis('off')
fig_1.tight_layout()
lin_ani = FuncAnimation(fig_1, animate, frames=nframes, interval=200)
FFwriter = FFMpegWriter(fps=10)
lin_ani.save('out/Predicted.mp4', writer=FFwriter)
# fig_1.savefig("reulst.png")
return animation , 'out/Predicted.mp4', 'out/Graph.mp4'
if __name__ == "__main__":
np.random.seed(1337)
random.seed(1337)
models = Optimization_training_progress_realtime(
Task="Sparsity",num_epoch=5, learning_rate=0.002 ,
num_layer=2,values_wieghts=4)
|