Nano-AutoGrad / app.py
deep-matter's picture
Upload 6 files
2ec702c
raw
history blame
1.67 kB
import gradio as gr
from demo import *
article = """
<p style='text-align: center'>
<a href='https://github.com/deep-matter/Nano-AutoGrad' target='_blank'>Github Repo Nano-AutoGrad</a>
</p>
"""
iface_webcam = gr.Interface(
Optimization_training_progress_realtime,
inputs=[
gr.Radio(["Sparsity"], label="Task"),
gr.Slider(minimum=1, maximum=100, label="Number of Epochs"),
gr.Slider(minimum=0.01, maximum=1.0, label="Learning Rate"),
gr.Number(label="Number of Layers"),
gr.Number(label="Values for Weights")
# gr.inputs.Slider(minimum=6, maximum=18, step=6, default=12), # Leaving manual fps out for now
],
outputs=[gr.Plot(),gr.Video(),gr.Video()],
title="Optimization Training Progress",
description="Real-time visualization of training progress",
article=article,
allow_flagging=False,
)
iface_file = gr.Interface(
Optimization_training_progress_realtime,
inputs=[
gr.Radio(["Classification"], label="Task"),
gr.Slider(minimum=1, maximum=100, label="Number of Epochs"),
gr.Slider(minimum=0.01, maximum=1.0, label="Learning Rate"),
gr.Number(label="Number of Layers"),
gr.Number(label="Values for Weights")
],
outputs=[gr.Plot(),gr.Video(),gr.Video()],
title="Optimization Training Progress",
description="Real-time visualization of training progress",
article=article,
allow_flagging=False,
)
if __name__ == '__main__':
gr.TabbedInterface(
interface_list=[iface_file, iface_webcam],
tab_names=["Classification Task", "Sparsity Task"]
).launch(enable_queue=True,share=True)