deep-matter commited on
Commit
d932430
·
1 Parent(s): 41a501f

Delete uilit.py

Browse files
Files changed (1) hide show
  1. uilit.py +0 -135
uilit.py DELETED
@@ -1,135 +0,0 @@
1
- from init import *
2
- import numpy as np
3
- import pandas as pd
4
- import matplotlib.pyplot as plt
5
- import os
6
- from PIL import Image
7
-
8
- import matplotlib.animation as animation
9
- from matplotlib.animation import FuncAnimation
10
- from IPython.display import clear_output
11
- from autograd.core.engine import Value
12
- from sklearn.datasets import make_moons, make_blobs
13
- import plotly.graph_objects as go
14
- import plotly.io as pio
15
- import imageio
16
-
17
- clear_output()
18
-
19
- # Iterate through the first 6 images
20
-
21
- def extract_path_df(path_dir, index_show):
22
- path_file = []
23
-
24
- for filesname in os.listdir(path_dir):
25
- path_file.append(os.path.join(path_dir,filesname))
26
-
27
- for data_df in range(0,len(path_file)):
28
- data_frame = pd.read_csv(path_file[data_df])
29
- show_df = data_frame.head(index_show)
30
- return path_file , f"dataframe: {show_df}"
31
-
32
- def loading_df_to_numpy(path_file):
33
- data_df = pd.read_csv(path_file)
34
- data = np.array(data_df)
35
- m, n = data.shape
36
- data_train = data[1000:m].T
37
- Y_train = data_train[0][40900:]
38
- X_train = data_train[1:n][:, 40900:]
39
-
40
-
41
- # Manually split the data into training and testing sets
42
- split_index = int(X_train.shape[0] * 0.8) # 80% for training, 20% for testing
43
- X_train_split = X_train[:, :10]
44
- Y_train_split = Y_train[:10]
45
- X_test_split = X_train[:,:5]
46
- Y_test_split = Y_train[:5]
47
-
48
- return X_train_split, X_test_split, Y_train_split, Y_test_split
49
-
50
- def initialize_data(n_samples: int, noise: float):
51
- input_data, Target = make_moons(n_samples=n_samples, noise=noise)
52
-
53
- Target = Target * 2 - 1 # make y be -1 or 14
54
- # fig.close()
55
- return input_data, Target
56
-
57
-
58
- def plot_sample(DATA_TRAIN,DATA_LABEL):
59
- num_images = min(6, DATA_TRAIN.shape[1])
60
- fig, axs = plt.subplots(2, 3, figsize=(10, 7))
61
-
62
- for i in range(num_images):
63
- label = DATA_LABEL
64
- image = DATA_TRAIN[:, i]
65
- current_image = image.reshape(28, 28) * 255
66
-
67
- # Determine the subplot coordinates
68
- row = i // 3
69
- col = i % 3
70
-
71
- # Plot the image in the corresponding subplot
72
- axs[row, col].imshow(current_image, cmap='gray')
73
- axs[row, col].set_title("Label: {}".format(label))
74
- axs[row, col].axis('off')
75
-
76
- plt.tight_layout()
77
- plt.savefig("sample.png")
78
-
79
- def copy(model):
80
- model = SparseMLP(nin=2, nouts=[16, 16, 1], sparsities=[0.,0.9,0.8])
81
- model.parameters()
82
- return model
83
-
84
- def Zvals(model , X_train):
85
- global X
86
- h = 0.25
87
- x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
88
- y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
89
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
90
- np.arange(y_min, y_max, h))
91
- Xmesh = np.c_[xx.ravel(), yy.ravel()]
92
- inputs = [list(map(Value, xrow)) for xrow in Xmesh]
93
- scores = list(map(model, inputs))
94
- Z = np.array([s.data > 0 for s in scores])
95
- Z = Z.reshape(xx.shape)
96
- return Z
97
-
98
-
99
- def dboundary(model):
100
- global X
101
- global Y
102
- h = 0.25
103
- x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
104
- y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
105
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
106
- np.arange(y_min, y_max, h))
107
- Xmesh = np.c_[xx.ravel(), yy.ravel()]
108
- fig, ax = plt.subplots(figsize=(8,8))
109
- Z = Zvals(model)
110
- ln = ax.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
111
- ax.scatter(X[:, 0], X[:, 1], c=Y, s=40, cmap=plt.cm.Spectral)
112
- ax.set_xlim(xx.min(), xx.max())
113
- ax.set_ylim(yy.min(), yy.max())
114
- return fig,ax,ln
115
-
116
- def graph_trace(Path, nframes, interval):
117
- animation_frames = []
118
- # Load the first image to get its dimensions and color mode
119
- first_frame_path = f"assets/{Path}_0.png"
120
- first_image = Image.open(first_frame_path)
121
- width, height = first_image.size
122
- color_mode = first_image.mode
123
-
124
- # Resize and convert all the images to the same dimensions and color mode
125
- resized_width = 900 # Set your desired width
126
- resized_height = 700 # Set your desired height
127
-
128
- for i in range(nframes):
129
- frame_path = f"assets/{Path}_{i}.png"
130
- image = Image.open(frame_path)
131
- resized_image = image.resize((resized_width, resized_height)).convert(color_mode)
132
- animation_frames.append(resized_image)
133
-
134
- animation_path = "out/Graph.mp4"
135
- imageio.mimsave(animation_path, animation_frames, format="mp4")