import gradio as gr from demo import * article = """

Github Repo Nano-AutoGrad

""" iface_webcam = gr.Interface( Optimization_training_progress_realtime, inputs=[ gr.Radio(["Sparsity"], label="Task"), gr.Slider(minimum=1, maximum=100, label="Number of Epochs"), gr.Slider(minimum=0.01, maximum=1.0, label="Learning Rate"), gr.Number(label="Number of Layers"), gr.Number(label="Values for Weights") # gr.inputs.Slider(minimum=6, maximum=18, step=6, default=12), # Leaving manual fps out for now ], outputs=[gr.Plot(),gr.Video(),gr.Video()], title="Optimization Training Progress", description="Real-time visualization of training progress", article=article, allow_flagging=False, ) iface_file = gr.Interface( Optimization_training_progress_realtime, inputs=[ gr.Radio(["Classification"], label="Task"), gr.Slider(minimum=1, maximum=100, label="Number of Epochs"), gr.Slider(minimum=0.01, maximum=1.0, label="Learning Rate"), gr.Number(label="Number of Layers"), gr.Number(label="Values for Weights") ], outputs=[gr.Plot(),gr.Video(),gr.Video()], title="Optimization Training Progress", description="Real-time visualization of training progress", article=article, allow_flagging=False, ) if __name__ == '__main__': gr.TabbedInterface( interface_list=[iface_file, iface_webcam], tab_names=["Classification Task", "Sparsity Task"] ).launch(enable_queue=True,share=False)