deepakaiplanet commited on
Commit
3a57b66
·
verified ·
1 Parent(s): 917e1c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -19
app.py CHANGED
@@ -4,43 +4,31 @@ import streamlit as st
4
  st.set_page_config(page_title="Home", page_icon=None, layout="centered",
5
  initial_sidebar_state="auto", menu_items=None)
6
 
7
- ## logo
8
- with st.sidebar:
9
- st.markdown("""<div style='text-align: left; margin-top:-200px;margin-left:-40px;'>
10
- <img src="https://affine.ai/wp-content/uploads/2023/05/Affine-Logo.svg" alt="logo" width="300" height="60">
11
- </div>""", unsafe_allow_html=True)
12
-
13
-
14
 
15
  st.markdown("""
16
  <div style='text-align: center; margin-top:-70px; margin-bottom: 5px;margin-left: -50px;'>
17
  <h2 style='font-size: 40px; font-family: Courier New, monospace;
18
  letter-spacing: 2px; text-decoration: none;'>
19
- <img src="https://acis.affineanalytics.co.in/assets/images/logo_small.png" alt="logo" width="70" height="60">
20
  <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
21
  -webkit-background-clip: text;
22
  -webkit-text-fill-color: transparent;
23
  text-shadow: none;'>
24
- IntelliForecast
25
  </span>
26
  <span style='font-size: 40%;'>
27
- <sup style='position: relative; top: 5px; color: #ed4965;'>by Affine</sup>
28
  </span>
29
  </h2>
30
  </div>
31
  """, unsafe_allow_html=True)
32
 
33
- st.header("Description")
34
- st.write("Affine Time Series Toolbox is a powerful and versatile tool designed to handle multiple time series data. It excels in forecasting demand with a high level of granularity, allowing for precise predictions at the store and product level. By leveraging this tool, businesses can minimize the need for constant model maintenance and reduce resource demands, all while ensuring accurate and reliable demand forecasts. Its wide-ranging capabilities make it suitable for application in various domains, from e-commerce to the energy sector.")
35
-
36
 
37
- st.header("Features")
38
  st.write("1. Efficient and Scalable Demand Forecasting")
39
- st.write("2. Reducing Model Maintenance Efforts and Resource Requirements for Granular-Level Forecasting")
40
- st.write("3. The unique aspect of this tool lies in its pre-trained models, eliminating the need to train individual models for each store and product. Instead, the models are trained on groups of stores and products, streamlining the process and saving valuable time and resources.")
41
- st.markdown("""<div style='text-align: center; margin-bottom:-50px'>
42
- <img src="https://acis.affineanalytics.co.in/assets/images/logo.svg" alt="logo" width="600" height="100 ">
43
- </div>""", unsafe_allow_html=True)
44
 
45
 
46
  hide_streamlit_style = """
 
4
  st.set_page_config(page_title="Home", page_icon=None, layout="centered",
5
  initial_sidebar_state="auto", menu_items=None)
6
 
 
 
 
 
 
 
 
7
 
8
  st.markdown("""
9
  <div style='text-align: center; margin-top:-70px; margin-bottom: 5px;margin-left: -50px;'>
10
  <h2 style='font-size: 40px; font-family: Courier New, monospace;
11
  letter-spacing: 2px; text-decoration: none;'>
 
12
  <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
13
  -webkit-background-clip: text;
14
  -webkit-text-fill-color: transparent;
15
  text-shadow: none;'>
16
+ ForecastX
17
  </span>
18
  <span style='font-size: 40%;'>
19
+ <sup style='position: relative; top: 5px; color: #ed4965;'>by AI Planet</sup>
20
  </span>
21
  </h2>
22
  </div>
23
  """, unsafe_allow_html=True)
24
 
25
+ st.header("Overview")
26
+ st.write("AI Planet's ForecastX is a robust and adaptable toolbox crafted to manage multiple time series datasets. It specializes in providing detailed demand forecasts, delivering highly accurate predictions at both the store and product levels. With ForecastX, businesses can significantly reduce the need for ongoing model maintenance and cut down on resource consumption, all while ensuring the delivery of precise and trustworthy demand forecasts. Its comprehensive features make it an ideal solution for various industries, including e-commerce and energy.")
 
27
 
28
+ st.header("Key Features")
29
  st.write("1. Efficient and Scalable Demand Forecasting")
30
+ st.write("2. Minimized Model Maintenance and Resource Usage for Detailed Forecasting")
31
+ st.write("3. What sets ForecastX apart is its use of pre-trained models, which eliminates the need to create individual models for each store and product. Instead, it employs models trained on clusters of stores and products, streamlining operations and conserving valuable time and resources.")
 
 
 
32
 
33
 
34
  hide_streamlit_style = """