Spaces:
Sleeping
Sleeping
Update pages/1_Store Demand Forecasting.py
Browse files
pages/1_Store Demand Forecasting.py
CHANGED
|
@@ -177,7 +177,7 @@ if option=='TFT':
|
|
| 177 |
|
| 178 |
#--------------------------------------------------------------------------------------------------------------
|
| 179 |
# tabs
|
| 180 |
-
tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table'])
|
| 181 |
#------------------------------------------------Tab-1-----------------------------------------------------------
|
| 182 |
tab1.markdown("""
|
| 183 |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
|
|
@@ -397,7 +397,7 @@ elif option=='Prophet':
|
|
| 397 |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
|
| 398 |
|
| 399 |
#---------------------------------------Tabs-----------------------------------------------------------------------
|
| 400 |
-
tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table'])
|
| 401 |
#-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
|
| 402 |
tab1.markdown("""
|
| 403 |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
|
|
@@ -477,17 +477,18 @@ elif option=='Prophet':
|
|
| 477 |
)
|
| 478 |
|
| 479 |
#------------------------------------------Tab-3--------------------------------------------------
|
| 480 |
-
train_a=fb_train_data.loc[fb_train_data[item]==1][['ds','
|
| 481 |
-
train_a['store']=1
|
| 482 |
-
train_a['item']=item
|
| 483 |
-
|
| 484 |
-
test_a
|
| 485 |
-
test_a['
|
| 486 |
-
test_a['item']=item
|
| 487 |
-
test_a.rename({'y':'sales',"ds":'date'})
|
| 488 |
actual_final_data=pd.concat([train_a,test_a])
|
|
|
|
|
|
|
| 489 |
actual_final_data['ds']=actual_final_data['ds'].dt.date
|
| 490 |
-
|
|
|
|
| 491 |
|
| 492 |
|
| 493 |
|
|
|
|
| 177 |
|
| 178 |
#--------------------------------------------------------------------------------------------------------------
|
| 179 |
# tabs
|
| 180 |
+
tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table']) #
|
| 181 |
#------------------------------------------------Tab-1-----------------------------------------------------------
|
| 182 |
tab1.markdown("""
|
| 183 |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
|
|
|
|
| 397 |
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
|
| 398 |
|
| 399 |
#---------------------------------------Tabs-----------------------------------------------------------------------
|
| 400 |
+
tab1,tab2,tab3=st.tabs(['📈Forecast Plot','🗃Forecast Table','🗃Actual Table']) # '🗃Actual Table'
|
| 401 |
#-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
|
| 402 |
tab1.markdown("""
|
| 403 |
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
|
|
|
|
| 477 |
)
|
| 478 |
|
| 479 |
#------------------------------------------Tab-3--------------------------------------------------
|
| 480 |
+
train_a=fb_train_data.loc[fb_train_data[item]==1][['ds','sales']]
|
| 481 |
+
# train_a['store']=1
|
| 482 |
+
# train_a['item']=item
|
| 483 |
+
test_a=fb_test_data.loc[fb_test_data[item]==1][['ds','sales']]
|
| 484 |
+
# test_a['store']=1
|
| 485 |
+
# test_a['item']=item.split('_')[-1]
|
|
|
|
|
|
|
| 486 |
actual_final_data=pd.concat([train_a,test_a])
|
| 487 |
+
actual_final_data['store']=1
|
| 488 |
+
actual_final_data['item']=item.split('_')[-1]
|
| 489 |
actual_final_data['ds']=actual_final_data['ds'].dt.date
|
| 490 |
+
actual_final_data.rename({"ds":'date'},inplace=True)
|
| 491 |
+
tab3.dataframe(actual_final_data[['date','store','item','sales']],width=500)
|
| 492 |
|
| 493 |
|
| 494 |
|