Spaces:
Sleeping
Sleeping
File size: 2,742 Bytes
39ea455 8b49c77 39ea455 8b49c77 39ea455 8b49c77 39ea455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
from langchain_community.llms import OpenAI
from langchain.prompts import PromptTemplate
import os
from dotenv import load_dotenv
load_dotenv()
open_api_key = os.getenv('OPENAI_API_KEY')
os.environ["OPENAI_API_KEY"] = open_api_key
system_prompt_1 = """
You are an advanced AI assistant tasked with helping to transcribes given texts into
simplified languages, specifically FALC (Facile à Lire et à Comprendre) and "Leichte Sprache" (Simple Language).
This system is intended to streamline the creation of accessible content for government websites.
Instructions for AI Development:
detect the language of text given then transcribes text into the same language which the guidelines of
FALC (Facile à Lire et à Comprendre) and "Leichte Sprache" (Simple Language) and
accurately transcribe complex texts into simplified language.
Ensure maintaining the context and meaning of the original text while simplifying its language.
text: {text}
transcribes text: """
system_prompt_2 = """Please translate the following text field content in english langauge.
text: {text}
"""
def translate_text(file, text_input):
llm = OpenAI()
with open(file.name, 'r', encoding='utf-8') as f:
file_text = f.read()
template_1 = PromptTemplate(input_variables=["text"], template=system_prompt_1)
prompt_1 = template_1.format(text=file_text)
file_translation = llm(prompt_1)
template_2 = PromptTemplate(input_variables=["text"], template=system_prompt_2)
prompt_2 = template_2.format(text=file_translation)
text_translation_op = llm(prompt_2)
template_3 = PromptTemplate(input_variables=["text"], template=system_prompt_2)
prompt_3 = template_2.format(text=file_text)
text_translation_ip = llm(prompt_3)
output_file_path = "translated_file.txt"
with open(output_file_path, 'w', encoding='utf-8') as f:
f.write(file_translation)
return text_translation_ip, file_translation, text_translation_op, output_file_path
iface = gr.Interface(
fn=translate_text,
inputs=[
gr.File(label="Upload Text File")
],
outputs=[
gr.Textbox(label="transcribes content in english Translated of input content"),
gr.Textbox(label="transcribes content"),
gr.Textbox(label="transcribes content in english Translated of output content"),
gr.File(label="Download Translated File Text")
],
title="Text Transcribes",
description="Upload a text file and provide a text input to translate the text using LangChain and OpenAI with predefined system prompts.",
allow_flagging="never"
)
iface.launch(debug=True)
|