deepaknautiyal commited on
Commit
4042f40
1 Parent(s): 064c64e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ peft_model_id = f"deepaknautiyal/bloom-1b7-lora-ads"
6
+ config = PeftConfig.from_pretrained(peft_model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ config.base_model_name_or_path,
9
+ return_dict=True,
10
+ load_in_8bit=True,
11
+ device_map="auto",
12
+ )
13
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
14
+
15
+ # Load the Lora model
16
+ model = PeftModel.from_pretrained(model, peft_model_id)
17
+
18
+
19
+ def make_inference(product_name, product_description):
20
+ batch = tokenizer(
21
+ f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:",
22
+ return_tensors="pt",
23
+ )
24
+
25
+ with torch.cuda.amp.autocast():
26
+ output_tokens = model.generate(**batch, max_new_tokens=50)
27
+
28
+ return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ # make a gradio interface
33
+ import gradio as gr
34
+
35
+ gr.Interface(
36
+ make_inference,
37
+ [
38
+ gr.inputs.Textbox(lines=2, label="Product Name"),
39
+ gr.inputs.Textbox(lines=5, label="Product Description"),
40
+ ],
41
+ gr.outputs.Textbox(label="Ad"),
42
+ title="GenerAd-AI",
43
+ description="GenerAd-AI is a generative model that generates ads for products.",
44
+ ).launch()