import os os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"],"aws_secret_access_key": os.environ["SECRET_KEY"]} # work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552 os.system("pip uninstall -y gradio") os.system("pip install gradio==3.4.1") os.system(os.environ["DD_ADDONS"]) import time from os import getcwd, path import deepdoctection as dd from deepdoctection.dataflow.serialize import DataFromList from deepdoctection.utils.settings import get_type from dd_addons.analyzer.loader import get_loader from dd_addons.extern.guidance import TOKEN_DEFAULT_INSTRUCTION from dd_addons.utils.settings import register_llm_token_tag, register_string_categories_from_list from dd_addons.extern.openai import OpenAiLmmTokenClassifier import gradio as gr analyzer = get_loader(reset_config_file=True) demo = gr.Blocks(css="scrollbar.css") def process_analyzer(openai_api_key, categories_str, instruction_str, img, pdf, max_datapoints): categories_list = categories_str.split(",") register_string_categories_from_list(categories_list, "custom_token_classes") custom_token_class = dd.object_types_registry.get("custom_token_classes") print([token_class for token_class in custom_token_class]) register_llm_token_tag([token_class for token_class in custom_token_class]) categories = { str(idx + 1): get_type(val) for idx, val in enumerate(categories_list) } gpt_token_classifier = OpenAiLmmTokenClassifier( model_name="gpt-3.5-turbo", categories=categories, api_key=openai_api_key, instruction= instruction_str if instruction_str else None, ) analyzer.pipe_component_list[8].language_model = gpt_token_classifier if img is not None: image = dd.Image(file_name=str(time.time()).replace(".","") + ".png", location="") image.image = img[:, :, ::-1] df = DataFromList(lst=[image]) df = analyzer.analyze(dataset_dataflow=df) elif pdf: df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints) else: raise ValueError df.reset_state() json_out = {} dpts = [] for idx, dp in enumerate(df): dpts.append(dp) json_out[f"page_{idx}"] = dp.get_token() return [dp.viz(show_cells=False, show_layouts=False, show_tables=False, show_words=True, show_token_class=True, ignore_default_token_class=True) for dp in dpts], json_out with demo: with gr.Box(): gr.Markdown("

Document AI GPT

") gr.Markdown("

Zero or few-shot Entity Extraction powered by ChatGPT and deepdoctection

" "
This pipeline consists of a stack of models powered for layout analysis and table recognition " "to prepare a prompt for ChatGPT.
" "
Be aware! The Space is still very fragile.

") with gr.Box(): gr.Markdown("

Upload a document and choose setting

") with gr.Row(): with gr.Column(): with gr.Tab("Image upload"): with gr.Column(): inputs = gr.Image(type='numpy', label="Original Image") with gr.Tab("PDF upload *"): with gr.Column(): inputs_pdf = gr.File(label="PDF") gr.Markdown("* If an image is cached in tab, remove it first") with gr.Box(): gr.Examples( examples=[path.join(getcwd(), "sample_2.png")], inputs = inputs) with gr.Box(): gr.Markdown("Enter your OpenAI API Key* ") user_token = gr.Textbox(value='', placeholder="OpenAI API Key", type="password", show_label=False) gr.Markdown("* Your API key will not be saved. However, it is always recommended to deactivate the" "API key once it is entered into an unknown source") with gr.Column(): with gr.Box(): gr.Markdown( "Enter a list of comma seperated entities. Use a snake case style. Avoid special characters. " "Best way is to only use `a-z` and `_`") categories = gr.Textbox(value='', placeholder="mitarbeiter_anzahl", show_label=False) with gr.Box(): gr.Markdown("Optional: Enter a prompt for additional guidance. Will use the placeholder as fallback") instruction = gr.Textbox(value='', placeholder=TOKEN_DEFAULT_INSTRUCTION, show_label=False) with gr.Row(): max_imgs = gr.Slider(1, 3, value=1, step=1, label="Number of pages in multi page PDF", info="Will stop after 3 pages") with gr.Row(): btn = gr.Button("Run model", variant="primary") with gr.Box(): gr.Markdown("

Outputs

") with gr.Row(): with gr.Column(): with gr.Box(): gr.Markdown("
JSON
") json = gr.JSON() with gr.Column(): with gr.Box(): gr.Markdown("
Layout detection
") gallery = gr.Gallery( label="Output images", show_label=False, elem_id="gallery" ).style(grid=2) with gr.Row(): with gr.Box(): gr.Markdown("
Table
") html = gr.HTML() btn.click(fn=process_analyzer, inputs=[user_token, categories, instruction, inputs, inputs_pdf, max_imgs], outputs=[gallery, json]) demo.launch()