Spaces:
Running
Running
import glob | |
import os.path | |
import tempfile | |
import gradio as gr | |
from PIL import Image | |
from attack import Attacker, make_args | |
def attack_given_image(image: Image.Image, target: str, steps: int, eps: float, progress=gr.Progress()): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
with tempfile.TemporaryDirectory() as td_input, tempfile.TemporaryDirectory() as td_output: | |
image_filename = os.path.join(td_input, 'image.png') | |
image.save(image_filename) | |
def _step_func(current_step: int): | |
progress(current_step / steps) | |
args = make_args([ | |
image_filename, | |
'--out_dir', str(td_output), | |
'--target', target, | |
'--eps', str(eps), | |
'--step_size', '0.135914', | |
'--steps', str(steps), | |
]) | |
attacker = Attacker(args) | |
before_prediction = attacker.image_predict(image) | |
attacker.attack(args.inputs, _step_func) | |
output_filename, *_ = glob.glob(os.path.join(td_output, '*.png')) | |
output_image = Image.open(output_filename) | |
after_prediction = attacker.image_predict(output_image) | |
return before_prediction, after_prediction, output_image | |
if __name__ == '__main__': | |
interface = gr.Interface( | |
attack_given_image, | |
inputs=[ | |
gr.Image(type='pil', label='Original Image'), | |
gr.Radio(['auto', 'ai', 'human'], value='auto', label='Attack Target'), | |
gr.Slider(minimum=1, maximum=50, value=20, step=1, label='Steps'), | |
gr.Slider(minimum=1.0, maximum=16.0, value=1.0, step=1 / 8, label='Eps'), | |
], | |
outputs=[ | |
gr.Label(label='Before Prediction'), | |
gr.Label(label='After Prediction'), | |
gr.Image(type='pil', label='Attacked Image'), | |
], | |
interpretation="default" | |
) | |
interface.queue(os.cpu_count()).launch() | |