Spaces:
Running
on
T4
Running
on
T4
File size: 30,341 Bytes
ed95f9b 9368b8d e0e7789 ed95f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import deepinv as dinv
from deepinv.physics import Physics, LinearPhysics, Downsampling
from deepinv.utils import TensorList
from deepinv.utils.tensorlist import TensorList
from huggingface_hub import hf_hub_download
device = 'cuda' if torch.cuda.is_available() else 'cpu'
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
class RAM(nn.Module):
r"""
RAM model
This model is a convolutional neural network (CNN) designed for image reconstruction tasks.
:param in_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
:param device: Device to which the model should be moved. If None, the model will be created on the default device.
:param pretrained: If True, the model will be initialized with pretrained weights.
"""
def __init__(
self,
in_channels=[1, 2, 3],
device=None,
pretrained=True,
):
super(RAM, self).__init__()
nc = [64, 128, 256, 512] # number of channels in the network
self.in_channels = in_channels
self.fact_realign = torch.nn.Parameter(torch.tensor([1.0], device=device))
self.separate_head = isinstance(in_channels, list)
if isinstance(in_channels, list):
in_channels_first = []
for i in range(len(in_channels)):
in_channels_first.append(in_channels[i] + 2)
# check if in_channels is a list
self.m_head = InHead(in_channels_first, nc[0])
self.m_down1 = BaseEncBlock(nc[0], nc[0], img_channels=in_channels, decode_upscale=1)
self.m_down2 = BaseEncBlock(nc[1], nc[1], img_channels=in_channels, decode_upscale=2)
self.m_down3 = BaseEncBlock(nc[2], nc[2], img_channels=in_channels, decode_upscale=4)
self.m_body = BaseEncBlock(nc[3], nc[3], img_channels=in_channels, decode_upscale=8)
self.m_up3 = BaseEncBlock(nc[2], nc[2], img_channels=in_channels, decode_upscale=4)
self.m_up2 = BaseEncBlock(nc[1], nc[1], img_channels=in_channels, decode_upscale=2)
self.m_up1 = BaseEncBlock(nc[0], nc[0], img_channels=in_channels, decode_upscale=1)
self.pool1 = downsample_strideconv(nc[0], nc[1], bias=False, mode="2")
self.pool2 = downsample_strideconv(nc[1], nc[2], bias=False, mode="2")
self.pool3 = downsample_strideconv(nc[2], nc[3], bias=False, mode="2")
self.up3 = upsample_convtranspose(nc[3], nc[2], bias=False, mode="2")
self.up2 = upsample_convtranspose(nc[2], nc[1], bias=False, mode="2")
self.up1 = upsample_convtranspose(nc[1], nc[0], bias=False, mode="2")
self.m_tail = OutTail(nc[0], in_channels)
# load pretrained weights from hugging face
if pretrained:
self.load_state_dict(
torch.load(hf_hub_download(repo_id="mterris/ram", filename="ram.pth.tar"), map_location=device))
if device is not None:
self.to(device)
def constant2map(self, value, x):
r"""
Converts a constant value to a map of the same size as the input tensor x.
:params float value: constant value
:params torch.Tensor x: input tensor
"""
if isinstance(value, torch.Tensor):
if value.ndim > 0:
value_map = value.view(x.size(0), 1, 1, 1)
value_map = value_map.expand(-1, 1, x.size(2), x.size(3))
else:
value_map = torch.ones(
(x.size(0), 1, x.size(2), x.size(3)), device=x.device
) * value[None, None, None, None].to(x.device)
else:
value_map = (
torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device)
* value
)
return value_map
def base_conditioning(self, x, sigma, gamma):
noise_level_map = self.constant2map(sigma, x)
gamma_map = self.constant2map(gamma, x)
return torch.cat((x, noise_level_map, gamma_map), 1)
def realign_input(self, x, physics, y):
r"""
Realign the input x based on the measurements y and the physics model.
Applies the proximity operator of the L2 norm with respect to the physics model.
:params torch.Tensor x: Input tensor
:params deepinv.physics.Physics physics: Physics model
:params torch.Tensor y: Measurements
"""
if hasattr(physics, "factor"):
f = physics.factor
elif hasattr(physics, "base") and hasattr(physics.base, "factor"):
f = physics.base.factor
elif hasattr(physics, "base") and hasattr(physics.base, "base") and hasattr(physics.base.base, "factor"):
f = physics.base.base.factor
else:
f = 1.0
sigma = 1e-6 # default value
if hasattr(physics.noise_model, 'sigma'):
sigma = physics.noise_model.sigma
if hasattr(physics, 'base') and hasattr(physics.base, 'noise_model') and hasattr(physics.base.noise_model,
'sigma'):
sigma = physics.base.noise_model.sigma
if hasattr(physics, 'base') and hasattr(physics.base, 'base') and hasattr(physics.base.base,
'noise_model') and hasattr(
physics.base.base.noise_model, 'sigma'):
sigma = physics.base.base.noise_model.sigma
if isinstance(y, TensorList):
num = (y[0].reshape(y[0].shape[0], -1).abs().mean(1))
else:
num = (y.reshape(y.shape[0], -1).abs().mean(1))
snr = num / (sigma + 1e-4) # SNR equivariant
gamma = 1 / (1e-4 + 1 / (
snr * f ** 2)) # TODO: check square-root / mean / check if we need to add a factor in front ?
gamma = gamma[(...,) + (None,) * (x.dim() - 1)]
model_input = physics.prox_l2(x, y, gamma=gamma * self.fact_realign)
return model_input
def forward_unet(self, x0, sigma=None, gamma=None, physics=None, y=None):
r"""
Forward pass of the UNet model.
:params torch.Tensor x0: init image
:params float sigma: Gaussian noise level
:params float gamma: Poisson noise gain
:params deepinv.physics.Physics physics: physics measurement operator
:params torch.Tensor y: measurements
"""
img_channels = x0.shape[1]
physics = MultiScaleLinearPhysics(physics, x0.shape[-3:], device=x0.device)
if self.separate_head and img_channels not in self.in_channels:
raise ValueError(
f"Input image has {img_channels} channels, but the network only have heads for {self.in_channels} channels.")
if y is not None:
x0 = self.realign_input(x0, physics, y)
x0 = self.base_conditioning(x0, sigma, gamma)
x1 = self.m_head(x0)
x1_ = self.m_down1(x1, physics=physics, y=y, img_channels=img_channels, scale=0)
x2 = self.pool1(x1_)
x3_ = self.m_down2(x2, physics=physics, y=y, img_channels=img_channels, scale=1)
x3 = self.pool2(x3_)
x4_ = self.m_down3(x3, physics=physics, y=y, img_channels=img_channels, scale=2)
x4 = self.pool3(x4_)
x = self.m_body(x4, physics=physics, y=y, img_channels=img_channels, scale=3)
x = self.up3(x + x4)
x = self.m_up3(x, physics=physics, y=y, img_channels=img_channels, scale=2)
x = self.up2(x + x3)
x = self.m_up2(x, physics=physics, y=y, img_channels=img_channels, scale=1)
x = self.up1(x + x2)
x = self.m_up1(x, physics=physics, y=y, img_channels=img_channels, scale=0)
x = self.m_tail(x + x1, img_channels)
return x
def forward(self, y=None, physics=None):
r"""
Reconstructs a signal estimate from measurements y
:param torch.tensor y: measurements
:param deepinv.physics.Physics physics: forward operator
"""
if physics is None:
physics = dinv.physics.Denoising(noise_model=dinv.physics.GaussianNoise(sigma=0.), device=y.device)
x_temp = physics.A_adjoint(y)
pad = (-x_temp.size(-2) % 8, -x_temp.size(-1) % 8)
physics = Pad(physics, pad)
x_in = physics.A_adjoint(y)
sigma = physics.noise_model.sigma if hasattr(physics.noise_model, "sigma") else 1e-3
gamma = physics.noise_model.gain if hasattr(physics.noise_model, "gain") else 1e-3
out = self.forward_unet(x_in, sigma=sigma, gamma=gamma, physics=physics, y=y)
out = physics.remove_pad(out)
return out
### --------------- MODEL ---------------
class BaseEncBlock(nn.Module):
def __init__(self, in_channels, out_channels, bias=False, nb=4, img_channels=None, decode_upscale=None):
super(BaseEncBlock, self).__init__()
self.enc = nn.ModuleList(
[
ResBlock(
in_channels,
out_channels,
bias=bias,
img_channels=img_channels,
decode_upscale=decode_upscale,
)
for _ in range(nb)
]
)
def forward(self, x, physics=None, y=None, img_channels=None, scale=0):
for i in range(len(self.enc)):
x = self.enc[i](x, physics=physics, y=y, img_channels=img_channels, scale=scale)
return x
def krylov_embeddings(y, p, factor, v=None, N=4, x_init=None):
r"""
Efficient Krylov subspace embedding computation with parallel processing.
:params torch.Tensor y: Input tensor.
:params p: An object with A and A_adjoint methods (linear operator).
:params float factor: Scaling factor.
:params torch.Tensor v: Precomputed values to subtract from Krylov sequence. Defaults to None.
:params int N: Number of Krylov iterations. Defaults to 4.
:params torch.Tensor x_init: Initial guess. Defaults to None.
"""
if x_init is None:
x = p.A_adjoint(y)
else:
x = x_init.clone() # Extract the first img_channels
norm = factor ** 2 # Precompute normalization factor
AtA = lambda u: p.A_adjoint(p.A(u)) * norm # Define the linear operator
v = v if v is not None else torch.zeros_like(x)
out = x.clone()
# Compute Krylov basis
x_k = x.clone()
for i in range(N - 1):
x_k = AtA(x_k) - v
out = torch.cat([out, x_k], dim=1)
return out
class MeasCondBlock(nn.Module):
r"""
Measurement conditioning block for the RAM model.
:param out_channels: Number of output channels.
:param img_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
:param decode_upscale: Upscaling factor for the decoding convolution.
:param N: Number of Krylov iterations.
:param depth_encoding: Depth of the encoding convolution.
:param c_mult: Multiplier for the number of channels.
"""
def __init__(self, out_channels=64, img_channels=None, decode_upscale=None, N=4, depth_encoding=1, c_mult=1):
super(MeasCondBlock, self).__init__()
self.separate_head = isinstance(img_channels, list)
assert img_channels is not None, "decode_dimensions should be provided"
assert decode_upscale is not None, "decode_upscale should be provided"
self.N = N
self.c_mult = c_mult
self.relu_encoding = nn.ReLU(inplace=False)
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False,
c_mult=self.c_mult * N, c_add=N, relu_in=False, skip_in=True)
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
self.gain_gradx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_grady = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_pinvx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_pinvy = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
def forward(self, x, y, physics, img_channels=None, scale=1):
physics.set_scale(scale)
dec = self.decoding_conv(x, img_channels)
factor = 2 ** (scale)
meas_y = krylov_embeddings(y, physics, factor, N=self.N)
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...])
for c in range(1, self.c_mult):
meas_cur = krylov_embeddings(y, physics, factor, N=self.N,
x_init=dec[:, img_channels * c:img_channels * (c + 1)])
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
meas = torch.cat([meas_y, meas_dec], dim=1)
cond = self.encoding_conv(meas)
emb = self.relu_encoding(cond)
return emb
class ResBlock(nn.Module):
r"""
Convolutional residual block.
:param in_channels: Number of input channels.
:param out_channels: Number of output channels.
:param kernel_size: Size of the convolution kernel.
:param stride: Stride of the convolution.
:param padding: Padding for the convolution.
:param bias: Whether to use bias in the convolution.
:param img_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
:param decode_upscale: Upscaling factor for the decoding convolution.
:param head: Whether this is a head block.
:param tail: Whether this is a tail block.
:param N: Number of Krylov iterations.
:param c_mult: Multiplier for the number of channels.
:param depth_encoding: Depth of the encoding convolution.
"""
def __init__(
self,
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=True,
img_channels=None,
decode_upscale=None,
head=False,
tail=False,
N=2,
c_mult=2,
depth_encoding=2,
):
super(ResBlock, self).__init__()
if not head and not tail:
assert in_channels == out_channels, "Only support in_channels==out_channels."
self.separate_head = isinstance(img_channels, list)
self.is_head = head
self.is_tail = tail
if self.is_head:
self.head = InHead(img_channels, out_channels, input_layer=True)
if not self.is_head and not self.is_tail:
self.conv1 = conv(
in_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
"C",
)
self.nl = nn.ReLU(inplace=True)
self.conv2 = conv(
out_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
"C",
)
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
self.PhysicsBlock = MeasCondBlock(out_channels=out_channels, c_mult=c_mult,
img_channels=img_channels, decode_upscale=decode_upscale,
N=N, depth_encoding=depth_encoding)
def forward(self, x, physics=None, y=None, img_channels=None, scale=0):
u = self.conv1(x)
u = self.nl(u)
u_2 = self.conv2(u)
emb_grad = self.PhysicsBlock(u, y, physics, img_channels=img_channels, scale=scale)
u_1 = self.gain * emb_grad
return x + u_2 + u_1
class InHead(torch.nn.Module):
def __init__(self, in_channels_list, out_channels, mode="", bias=False, input_layer=False):
super(InHead, self).__init__()
self.in_channels_list = in_channels_list
self.input_layer = input_layer
for i, in_channels in enumerate(in_channels_list):
conv = AffineConv2d(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
mode=mode,
kernel_size=3,
stride=1,
padding=1,
padding_mode="zeros",
)
setattr(self, f"conv{i}", conv)
def forward(self, x):
in_channels = x.size(1) - 1 if self.input_layer else x.size(1)
# find index
i = self.in_channels_list.index(in_channels)
x = getattr(self, f"conv{i}")(x)
return x
class OutTail(torch.nn.Module):
def __init__(self, in_channels, out_channels_list, mode="", bias=False):
super(OutTail, self).__init__()
self.in_channels = in_channels
self.out_channels_list = out_channels_list
for i, out_channels in enumerate(out_channels_list):
conv = AffineConv2d(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
mode=mode,
kernel_size=3,
stride=1,
padding=1,
padding_mode="zeros",
)
setattr(self, f"conv{i}", conv)
def forward(self, x, out_channels):
i = self.out_channels_list.index(out_channels)
x = getattr(self, f"conv{i}")(x)
return x
class Heads(torch.nn.Module):
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, c_add=0,
relu_in=False, skip_in=False):
super(Heads, self).__init__()
self.in_channels_list = [c * (c_mult + c_add) for c in in_channels_list]
self.scale = scale
self.mode = mode
for i, in_channels in enumerate(self.in_channels_list):
setattr(self, f"head{i}",
HeadBlock(in_channels, out_channels, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
if self.mode == "":
self.nl = torch.nn.ReLU(inplace=False)
if self.scale != 1:
for i, in_channels in enumerate(in_channels_list):
setattr(self, f"down{i}",
downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
def forward(self, x):
in_channels = x.size(1)
i = self.in_channels_list.index(in_channels)
if self.scale != 1:
if self.mode == "bilinear":
x = torch.nn.functional.interpolate(x, scale_factor=1 / self.scale, mode='bilinear',
align_corners=False)
else:
x = getattr(self, f"down{i}")(x)
x = self.nl(x)
# find index
x = getattr(self, f"head{i}")(x)
return x
class Tails(torch.nn.Module):
def __init__(self, in_channels, out_channels_list, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1,
relu_in=False, skip_in=False):
super(Tails, self).__init__()
self.out_channels_list = out_channels_list
self.scale = scale
for i, out_channels in enumerate(out_channels_list):
setattr(self, f"tail{i}",
HeadBlock(in_channels, out_channels * c_mult, depth=depth, bias=bias, relu_in=relu_in,
skip_in=skip_in))
self.mode = mode
if self.mode == "":
self.nl = torch.nn.ReLU(inplace=False)
if self.scale != 1:
for i, out_channels in enumerate(out_channels_list):
setattr(self, f"up{i}",
upsample_convtranspose(out_channels * c_mult, out_channels * c_mult, bias=bias,
mode=str(self.scale)))
def forward(self, x, out_channels):
i = self.out_channels_list.index(out_channels)
x = getattr(self, f"tail{i}")(x)
# find index
if self.scale != 1:
if self.mode == "bilinear":
x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode='bilinear', align_corners=False)
else:
x = getattr(self, f"up{i}")(x)
return x
class HeadBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, depth=2, relu_in=False, skip_in=False):
super(HeadBlock, self).__init__()
padding = kernel_size // 2
c = out_channels if depth < 2 else in_channels
self.convin = torch.nn.Conv2d(in_channels, c, kernel_size, padding=padding, bias=bias)
self.zero_conv_skip = torch.nn.Conv2d(in_channels, c, 1, bias=False)
self.depth = depth
self.nl_1 = torch.nn.ReLU(inplace=False)
self.nl_2 = torch.nn.ReLU(inplace=False)
self.relu_in = relu_in
self.skip_in = skip_in
for i in range(depth - 1):
if i < depth - 2:
c_in, c = in_channels, in_channels
else:
c_in, c = in_channels, out_channels
setattr(self, f"conv1{i}", torch.nn.Conv2d(c_in, c_in, kernel_size, padding=padding, bias=bias))
setattr(self, f"conv2{i}", torch.nn.Conv2d(c_in, c, kernel_size, padding=padding, bias=bias))
setattr(self, f"skipconv{i}", torch.nn.Conv2d(c_in, c, 1, bias=False))
def forward(self, x):
if self.skip_in and self.relu_in:
x = self.nl_1(self.convin(x)) + self.zero_conv_skip(x)
elif self.skip_in and not self.relu_in:
x = self.convin(x) + self.zero_conv_skip(x)
else:
x = self.convin(x)
for i in range(self.depth - 1):
aux = getattr(self, f"conv1{i}")(x)
aux = self.nl_2(aux)
aux_0 = getattr(self, f"conv2{i}")(aux)
aux_1 = getattr(self, f"skipconv{i}")(x)
x = aux_0 + aux_1
return x
# --------------------------------------------------------------------------------------
class AffineConv2d(nn.Conv2d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
mode="affine",
bias=False,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode="circular",
blind=True,
):
if mode == "affine": # f(a*x + 1) = a*f(x) + 1
bias = False
super().__init__(
in_channels,
out_channels,
kernel_size,
bias=bias,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
padding_mode=padding_mode,
)
self.blind = blind
self.mode = mode
def affine(self, w):
"""returns new kernels that encode affine combinations"""
return (
w.view(self.out_channels, -1).roll(1, 1).view(w.size())
- w
+ 1 / w[0, ...].numel()
)
def forward(self, x):
if self.mode != "affine":
return super().forward(x)
else:
kernel = (
self.affine(self.weight)
if self.blind
else torch.cat(
(self.affine(self.weight[:, :-1, :, :]), self.weight[:, -1:, :, :]),
dim=1,
)
)
padding = tuple(
elt for elt in reversed(self.padding) for _ in range(2)
) # used to translate padding arg used by Conv module to the ones used by F.pad
padding_mode = (
self.padding_mode if self.padding_mode != "zeros" else "constant"
) # used to translate padding_mode arg used by Conv module to the ones used by F.pad
return F.conv2d(
F.pad(x, padding, mode=padding_mode),
kernel,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
)
"""
Functional blocks below
Parts of code borrowed from
https://github.com/cszn/DPIR/tree/master/models
https://github.com/xinntao/BasicSR
"""
from collections import OrderedDict
import torch
import torch.nn as nn
"""
# --------------------------------------------
# Advanced nn.Sequential
# https://github.com/xinntao/BasicSR
# --------------------------------------------
"""
def sequential(*args):
"""Advanced nn.Sequential.
Args:
nn.Sequential, nn.Module
Returns:
nn.Sequential
"""
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
def conv(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=True,
mode="CBR",
):
L = []
for t in mode:
if t == "C":
L.append(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
)
elif t == "T":
L.append(
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
)
elif t == "R":
L.append(nn.ReLU(inplace=True))
else:
raise NotImplementedError("Undefined type: ".format(t))
return sequential(*L)
# --------------------------------------------
# convTranspose (+ relu)
# --------------------------------------------
def upsample_convtranspose(
in_channels=64,
out_channels=3,
padding=0,
bias=True,
mode="2R",
):
assert len(mode) < 4 and mode[0] in [
"2",
"3",
"4",
"8",
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
kernel_size = int(mode[0])
stride = int(mode[0])
mode = mode.replace(mode[0], "T")
up1 = conv(
in_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
mode,
)
return up1
def downsample_strideconv(
in_channels=64,
out_channels=64,
padding=0,
bias=True,
mode="2R",
):
assert len(mode) < 4 and mode[0] in [
"2",
"3",
"4",
"8",
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
kernel_size = int(mode[0])
stride = int(mode[0])
mode = mode.replace(mode[0], "C")
down1 = conv(
in_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
mode,
)
return down1
class Upsampling(Downsampling):
def A(self, x, **kwargs):
return super().A_adjoint(x, **kwargs)
def A_adjoint(self, y, **kwargs):
return super().A(y, **kwargs)
def prox_l2(self, z, y, gamma, **kwargs):
return super().prox_l2(z, y, gamma, **kwargs)
class MultiScalePhysics(Physics):
def __init__(self, physics, img_shape, filter="sinc", scales=[2, 4, 8], device='cpu', **kwargs):
super().__init__(noise_model=physics.noise_model, **kwargs)
self.base = physics
self.scales = scales
self.img_shape = img_shape
self.Upsamplings = [Upsampling(img_size=img_shape, filter=filter, factor=factor, device=device) for factor in
scales]
self.scale = 0
def set_scale(self, scale):
if scale is not None:
self.scale = scale
def A(self, x, scale=None, **kwargs):
self.set_scale(scale)
if self.scale == 0:
return self.base.A(x, **kwargs)
else:
return self.base.A(self.Upsamplings[self.scale - 1].A(x), **kwargs)
def downsample(self, x, scale=None):
self.set_scale(scale)
if self.scale == 0:
return x
else:
return self.Upsamplings[self.scale - 1].A_adjoint(x)
def upsample(self, x, scale=None):
self.set_scale(scale)
if self.scale == 0:
return x
else:
return self.Upsamplings[self.scale - 1].A(x)
def update_parameters(self, **kwargs):
self.base.update_parameters(**kwargs)
class MultiScaleLinearPhysics(MultiScalePhysics, LinearPhysics):
def __init__(self, physics, img_shape, filter="sinc", scales=[2, 4, 8], **kwargs):
super().__init__(physics=physics, img_shape=img_shape, filter=filter, scales=scales, **kwargs)
def A_adjoint(self, y, scale=None, **kwargs):
self.set_scale(scale)
y = self.base.A_adjoint(y, **kwargs)
if self.scale == 0:
return y
else:
return self.Upsamplings[self.scale - 1].A_adjoint(y)
class Pad(LinearPhysics):
def __init__(self, physics, pad):
super().__init__(noise_model=physics.noise_model)
self.base = physics
self.pad = pad
def A(self, x):
return self.base.A(x[..., self.pad[0]:, self.pad[1]:])
def A_adjoint(self, y):
y = self.base.A_adjoint(y)
y = torch.nn.functional.pad(y, (self.pad[1], 0, self.pad[0], 0))
return y
def remove_pad(self, x):
return x[..., self.pad[0]:, self.pad[1]:]
def update_parameters(self, **kwargs):
self.base.update_parameters(**kwargs) |