File size: 27,579 Bytes
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33dc149
12a4d59
 
 
 
 
33dc149
12a4d59
 
 
 
 
33dc149
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from typing import Any, List

import deepinv as dinv
import numpy as np
import torch
from deepinv.physics.generator import MotionBlurGenerator, SigmaGenerator
from torchvision import transforms

from datasets import Preprocessed_fastMRI, Preprocessed_LIDCIDRI
from utils import get_model

DEFAULT_MODEL_PARAMS = {
    "in_channels": [1, 2, 3],
    "grayscale": False,
    "conv_type": "base",
    "pool_type": "base",
    "layer_scale_init_value": 1e-6,
    "init_type": "ortho",
    "gain_init_conv": 1.0,
    "gain_init_linear": 1.0,
    "drop_prob": 0.0,
    "replk": False,
    "mult_fact": 4,
    "antialias": "gaussian",
    "nc_base": 64,
    "cond_type": "base",
    "blind": False,
    "pretrained_pth": None,
    "N": 2,
    "c_mult": 2,
    "depth_encoding": 2,
    "relu_in_encoding": False,
    "skip_in_encoding": True
}


class PhysicsWithGenerator(torch.nn.Module):
    """Interface between Physics, Generator and Gradio."""
    all_physics = ["MotionBlur_easy", "MotionBlur_medium", "MotionBlur_hard", "GaussianBlur",
                   "MRI", "CT"]

    def __init__(self, physics_name: str, device_str: str = "cpu") -> None:
        super().__init__()

        self.name = physics_name
        if self.name not in self.all_physics:
            raise ValueError(f"{self.name} is unavailable.")

        self.sigma_generator = SigmaGenerator(sigma_min=0.001, sigma_max=0.2, device=device_str)
        if self.name == "MotionBlur_easy":
            psf_size = 31
            self.physics = dinv.physics.Blur(noise_model=dinv.physics.GaussianNoise(sigma=.01), padding="valid",
                                             device=device_str)
            self.physics_generator = MotionBlurGenerator((psf_size, psf_size), l=0.1, sigma=0.1, device=device_str) + SigmaGenerator(sigma_min=0.01, sigma_max=0.01, device=device_str)
            self.generator = self.physics_generator + SigmaGenerator(sigma_min=0.01, sigma_max=0.01, device=device_str)
            self.saved_params = {"updatable_params": {"sigma": 0.05},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.01, "noise_sigma_max": 0.01,
                                                  "psf_size": 31, "motion_gen_l": 0.1, "motion_gen_s": 0.1}}
        elif self.name == "MotionBlur_medium":
            psf_size = 31
            self.physics = dinv.physics.Blur(noise_model=dinv.physics.GaussianNoise(sigma=.05), padding="valid",
                                             device=device_str)
            self.physics_generator = MotionBlurGenerator((psf_size, psf_size), l=0.6, sigma=0.5, device=device_str) + SigmaGenerator(sigma_min=0.05, sigma_max=0.05, device=device_str)
            self.generator = self.physics_generator + SigmaGenerator(sigma_min=0.05, sigma_max=0.05, device=device_str)
            self.saved_params = {"updatable_params": {"sigma": 0.05},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.05, "noise_sigma_max": 0.05,
                                                  "psf_size": 31, "motion_gen_l": 0.6, "motion_gen_s": 0.5}}
        elif self.name == "MotionBlur_hard":
            psf_size = 31
            self.physics = dinv.physics.Blur(noise_model=dinv.physics.GaussianNoise(sigma=.1), padding="valid",
                                             device=device_str)
            self.physics_generator = MotionBlurGenerator((psf_size, psf_size), l=1.2, sigma=1.0, device=device_str) + SigmaGenerator(sigma_min=0.1, sigma_max=0.1, device=device_str)
            self.generator = self.physics_generator + SigmaGenerator(sigma_min=0.1, sigma_max=0.1, device=device_str)
            self.saved_params = {"updatable_params": {"sigma": 0.05},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.1, "noise_sigma_max": 0.1,
                                                  "psf_size": 31, "motion_gen_l": 1.2, "motion_gen_s": 1.0}}
        elif self.name == "GaussianBlur":
            psf_size = 31
            self.physics = dinv.physics.Blur(noise_model=dinv.physics.GaussianNoise(sigma=0.05), padding="valid",
                                             device=device_str)
            self.physics_generator = GaussianBlurGenerator(psf_size=(psf_size, psf_size), num_channels=1,
                                                           device=device_str)
            self.generator = self.physics_generator + self.sigma_generator
            self.saved_params = {"updatable_params": {"sigma": 0.05},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.001, "noise_sigma_max": 0.2,
                                                  "psf_size": 31, "num_channels": 1}}
        elif self.name == "MRI":
            self.physics = dinv.physics.MRI(img_size=(640, 320), noise_model=dinv.physics.GaussianNoise(sigma=.01),
                                            device=device_str)
            self.physics_generator = dinv.physics.generator.RandomMaskGenerator((2, 640, 320), acceleration_factor=4)
            self.generator = self.physics_generator  # + self.sigma_generator
            self.saved_params = {"updatable_params": {"sigma": 0.05},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.001, "noise_sigma_max": 0.2,
                                                  "acceleration_factor": 4}}
        elif self.name == "CT":
            acceleration_factor = 10
            img_h = 480
            angles = int(img_h / acceleration_factor)
            # angles = torch.linspace(0, 180, steps=10)
            self.physics = dinv.physics.Tomography(
                img_width=img_h,
                angles=angles,
                circle=False,
                normalize=True,
                device=device_str,
                noise_model=dinv.physics.GaussianNoise(sigma=1e-4),
                max_iter=10,
            )
            self.physics_generator = None
            self.generator = self.sigma_generator
            self.saved_params = {"updatable_params": {"sigma": 0.1},
                                 "updatable_params_converter": {"sigma": float},
                                 "fixed_params": {"noise_sigma_min": 0.001, "noise_sigma_max": 0.,
                                                  "angles": angles, "max_iter": 10}}

    def display_saved_params(self) -> str:
        """Printable version of saved_params."""
        updatable_params_str = "Updatable parameters:\n"
        for param_name, param_value in self.saved_params["updatable_params"].items():
            updatable_params_str += f"\t\t{param_name} = {param_value}" + "\n"

        fixed_params_str = "Fixed parameters:\n"
        for param_name, param_value in self.saved_params["fixed_params"].items():
            fixed_params_str += f"\t\t{param_name} = {param_value}" + "\n"

        return updatable_params_str + fixed_params_str

    def _update_save_params(self, key: str, value: Any) -> None:
        """Update value of an existing key in save_params."""
        if key in list(self.saved_params["updatable_params"].keys()):
            if type(value) == str:  # it may be only a str representation
                # type: str -> ???
                value = self.saved_params["updatable_params_converter"][key](value)
            elif isinstance(value, torch.Tensor):
                value = value.item()  # type: torch.Tensor -> float
                value = float(f"{value:.4f}")  # keeps only 4 significant digits
            self.saved_params["updatable_params"][key] = value

    def update_and_display_params(self, key, value) -> str:
        """_update_save_params + update physics with saved_params + display_saved_params"""
        self._update_save_params(key, value)

        if self.name == "Denoising":
            self.physics.noise_model.update_parameters(**self.saved_params["updatable_params"])
        else:
            self.physics.update_parameters(**self.saved_params["updatable_params"])

        return self.display_saved_params()

    def update_saved_params_and_physics(self, **kwargs) -> None:
        """Update save_params and update physics."""
        for key, value in kwargs.items():
            self._update_save_params(key, value)

        self.physics.update(**kwargs)

    def forward(self, x: torch.Tensor, use_gen: bool) -> torch.Tensor:
        if self.name in ["MotionBlur_easy", "MotionBlur_medium", "MotionBlur_hard", "GaussianBlur"] and not hasattr(self.physics, "filter"):
            use_gen = True
        elif self.name in ["MRI"] and not hasattr(self.physics, "mask"):
            use_gen = True

        if use_gen:
            kwargs = self.generator.step(batch_size=x.shape[0])  # generate a set of params for each sample
            self.update_saved_params_and_physics(**kwargs)

        return self.physics(x)


class EvalModel(torch.nn.Module):
    """Eval model.

    Is there a difference with BaselineModel ?
        -> BaselineModel should be models that are already trained and will have fixed weights.
        -> Eval model will change depending on differents checkpoints.
    """
    all_models = ["unext_emb_physics_config_C"]

    def __init__(self, model_name: str, ckpt_pth: str = "", device_str: str = "cpu") -> None:
        """Load the model we want to evaluate."""
        super().__init__()
        self.base_name = model_name
        self.ckpt_pth = ckpt_pth
        self.name = self.base_name
        if self.base_name not in self.all_models:
            raise ValueError(f"{self.base_name} is unavailable.")
        if self.base_name == "unext_emb_physics_config_C":
            if self.ckpt_pth == "":
                self.ckpt_pth = "ckpt/ram_ckp_10.pth.tar"
            self.model = get_model(model_name=self.base_name,
                                   device='cpu',
                                   **DEFAULT_MODEL_PARAMS)

            # load model checkpoint
            state_dict = torch.load(self.ckpt_pth, map_location=lambda storage, loc: storage)[
                'state_dict']  # load on cpu
            self.model.load_state_dict(state_dict)
            self.model.to(device_str)
            self.model.eval()

            # add epoch in the model name
            epoch = torch.load(self.ckpt_pth, map_location=lambda storage, loc: storage)['epoch']
            self.name = self.name + f"+{epoch}"

    def forward(self, y: torch.Tensor, physics: torch.nn.Module) -> torch.Tensor:
        return self.model(y, physics=physics)


class BaselineModel(torch.nn.Module):
    """Baseline model.

    Is there a difference with EvalModel ?
        -> BaselineModel should be models that are already trained and will have fixed weights.
        -> Eval model will change depending on differents checkpoints.
    """
    all_baselines = ["DRUNET", "PnP-PGD-DRUNET", "SWINIRx2", "SWINIRx4", "DPIR",
                     "DPIR_MRI", "DPIR_CT", "PDNET"]

    def __init__(self, model_name: str, device_str: str = "cpu") -> None:
        super().__init__()
        self.base_name = model_name
        self.ckpt_pth = ""
        self.name = self.base_name
        if self.name not in self.all_baselines:
            raise ValueError(f"{self.name} is unavailable.")
        elif self.name == "DRUNET":
            n_channels = 3
            ckpt_pth = "ckpt/drunet_deepinv_color_finetune_22k.pth"
            self.model = dinv.models.DRUNet(in_channels=n_channels,
                                            out_channels=n_channels,
                                            device=device_str,
                                            pretrained=ckpt_pth)
            self.model.eval()  # Set the model to evaluation mode
        elif self.name == 'PDNET':
            ckpt_pth = "ckpt/pdnet.pth.tar"
            self.model = get_model(model_name='pdnet',
                                   device=device_str)
            self.model.eval()
            self.model.load_state_dict(torch.load(ckpt_pth, map_location=lambda storage, loc: storage)['state_dict'])
        elif self.name == "SWINIRx2":
            n_channels = 3
            scale = 2
            ckpt_pth = "ckpt/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth"
            upsampler = 'nearest+conv' if 'realSR' in ckpt_pth else 'pixelshuffle'
            self.model = dinv.models.SwinIR(upscale=scale, in_chans=n_channels, img_size=64, window_size=8,
                                            img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180,
                                            num_heads=[6, 6, 6, 6, 6, 6],
                                            mlp_ratio=2, upsampler=upsampler, resi_connection='1conv',
                                            pretrained=ckpt_pth)
            self.model.to(device_str)
            self.model.eval()  # Set the model to evaluation mode
        elif self.name == "SWINIRx4":
            n_channels = 3
            scale = 4
            ckpt_pth = "ckpt/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth"
            upsampler = 'nearest+conv' if 'realSR' in ckpt_pth else 'pixelshuffle'
            self.model = dinv.models.SwinIR(upscale=scale, in_chans=n_channels, img_size=64, window_size=8,
                                            img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180,
                                            num_heads=[6, 6, 6, 6, 6, 6],
                                            mlp_ratio=2, upsampler=upsampler, resi_connection='1conv',
                                            pretrained=ckpt_pth)
            self.model.to(device_str)
            self.model.eval()  # Set the model to evaluation mode

        elif self.name == "PnP-PGD-DRUNET":
            n_channels = 3
            ckpt_pth = "ckpt/drunet_deepinv_color_finetune_22k.pth"
            drunet = dinv.models.DRUNet(in_channels=n_channels,
                                        out_channels=n_channels,
                                        device=device_str,
                                        pretrained=ckpt_pth)
            drunet.eval()  # Set the model to evaluation mode
            self.model = dinv.optim.optim_builder(iteration="PGD",
                                                  prior=dinv.optim.PnP(drunet).to(device_str),
                                                  data_fidelity=dinv.optim.L2(),
                                                  max_iter=20,
                                                  params_algo={'stepsize': 1., 'g_param': .05})
        elif self.name == "DPIR":
            n_channels = 3
            ckpt_pth = "ckpt/drunet_deepinv_color_finetune_22k.pth"
            drunet = dinv.models.DRUNet(in_channels=n_channels,
                                        out_channels=n_channels,
                                        device=device_str,
                                        pretrained=ckpt_pth)
            drunet.eval()  # Set the model to evaluation mode

            # Specify the denoising prior
            self.prior = dinv.optim.prior.PnP(denoiser=drunet)
        elif self.name == "DPIR_MRI":
            class ComplexDenoiser(torch.nn.Module):
                def __init__(self, denoiser):
                    super().__init__()
                    self.denoiser = denoiser

                def forward(self, x, sigma):
                    noisy_batch = torch.cat((x[:, 0:1, ...], x[:, 1:2, ...]), 0)
                    input_min = noisy_batch.min()
                    denoised_batch = self.denoiser(noisy_batch - input_min, sigma)
                    denoised_batch = denoised_batch + input_min
                    denoised = torch.cat((denoised_batch[0:1, ...], denoised_batch[1:2, ...]), 1)
                    return denoised

            # Load PnP denoiser backbone
            n_channels = 1
            ckpt_pth = "ckpt/drunet_gray.pth"
            drunet = dinv.models.DRUNet(in_channels=n_channels, out_channels=n_channels, device=device_str,
                                        pretrained=ckpt_pth)
            complex_drunet = ComplexDenoiser(drunet)
            complex_drunet.eval()

            # Specify the denoising prior
            self.prior = dinv.optim.prior.PnP(denoiser=complex_drunet)
        elif self.name == "DPIR_CT":
            class CTDenoiser(torch.nn.Module):
                def __init__(self, denoiser):
                    super().__init__()
                    self.denoiser = denoiser

                def forward(self, x, sigma):
                    x = x - x.min()
                    denoised = self.denoiser(x, sigma)
                    denoised = denoised + x.min()
                    return denoised

            # Load PnP denoiser backbone
            n_channels = 1
            ckpt_pth = "ckpt/drunet_gray.pth"
            drunet = dinv.models.DRUNet(in_channels=n_channels, out_channels=n_channels, device=device_str,
                                        pretrained=ckpt_pth)
            ct_drunet = CTDenoiser(drunet)
            ct_drunet.eval()

            # Specify the denoising prior
            self.prior = dinv.optim.prior.PnP(denoiser=ct_drunet)

    def circular_roll(self, tensor, p_h, p_w):
        return tensor.roll(shifts=(p_h, p_w), dims=(-2, -1))

    def get_DPIR_params(self, noise_level_img, max_iter=8):
        r"""
        Default parameters for the DPIR Plug-and-Play algorithm.

        :param float noise_level_img: Noise level of the input image.
        :return: tuple(list with denoiser noise level per iteration, list with stepsize per iteration, iterations).
        """
        max_iter = 8
        s1 = 49.0 / 255.0
        s2 = max(noise_level_img, 0.01)
        sigma_denoiser = np.logspace(np.log10(s1), np.log10(s2), max_iter).astype(
            np.float32
        )
        stepsize = (sigma_denoiser / max(0.01, noise_level_img)) ** 2
        lamb = 1 / 0.23
        return list(sigma_denoiser), list(lamb * stepsize)

    def get_DPIR_MRI_params(self, noise_level_img: float, max_iter: int = 8):
        r"""
        Default parameters for the DPIR Plug-and-Play algorithm.

        :param float noise_level_img: Noise level of the input image.
        """
        s1 = 49.0 / 255.0
        s2 = noise_level_img
        sigma_denoiser = np.logspace(np.log10(s1), np.log10(s2), max_iter).astype(
            np.float32
        )
        stepsize = (sigma_denoiser / max(0.01, noise_level_img)) ** 2
        lamb = 1.
        return lamb, list(sigma_denoiser), list(stepsize), max_iter

    def get_DPIR_CT_params(self, noise_level_img: float, max_iter: int = 8, lip_cons: float = 1.0):
        r"""
        Default parameters for the DPIR Plug-and-Play algorithm.

        :param float noise_level_img: Noise level of the input image.
        """
        s1 = 49.0 / 255.0 * lip_cons
        s2 = noise_level_img
        sigma_denoiser = np.logspace(np.log10(s1), np.log10(s2), max_iter).astype(
            np.float32
        )
        stepsize = (sigma_denoiser / max(0.01, noise_level_img)) ** 2  #
        lamb = 1.
        return lamb, list(sigma_denoiser), list(stepsize), max_iter

    def forward(self, y: torch.Tensor, physics: torch.nn.Module) -> torch.Tensor:
        if self.name == "DRUNET":
            return self.model(y, sigma=physics.noise_model.sigma)
        elif self.name == "PnP-PGD-DRUNET":
            return self.model(y, physics=physics)
        elif self.name == "DPIR":
            # Set the DPIR algorithm parameters
            sigma_float = physics.noise_model.sigma.item()  # sigma should be a single value
            max_iter = 8

            sigma_denoiser, stepsize = self.get_DPIR_params(sigma_float, max_iter=max_iter)
            params_algo = {"stepsize": stepsize, "g_param": sigma_denoiser}
            early_stop = False  # Do not stop algorithm with convergence criteria

            # instantiate DPIR
            model = dinv.optim.optim_builder(
                iteration="HQS",
                prior=self.prior,
                data_fidelity=dinv.optim.data_fidelity.L2(),
                early_stop=early_stop,
                max_iter=max_iter,
                verbose=True,
                params_algo=params_algo,
            )
            return model(y, physics=physics)
        elif self.name == "DPIR_MRI":
            sigma_float = max(physics.noise_model.sigma.item(), 0.015)  # sigma should be a single value
            lamb, sigma_denoiser, stepsize, max_iter = self.get_DPIR_MRI_params(sigma_float, max_iter=16)
            stepsize = [stepsize[0]] * max_iter
            params_algo = {"stepsize": stepsize, "g_param": sigma_denoiser, "lambda": lamb}
            early_stop = False  # Do not stop algorithm with convergence criteria

            # Instantiate the algorithm class to solve the IP
            model = dinv.optim.optim_builder(
                iteration="HQS",
                prior=self.prior,
                data_fidelity=dinv.optim.data_fidelity.L2(),
                early_stop=early_stop,
                max_iter=max_iter,
                verbose=True,
                params_algo=params_algo,
            )
            return model(y, physics=physics)
        elif self.name == "DPIR_CT":
            # Set the DPIR algorithm parameters
            sigma_float = physics.noise_model.sigma.item()  # sigma should be a single value
            lip_const = physics.compute_norm(physics.A_adjoint(y))
            lamb, sigma_denoiser, stepsize, max_iter = self.get_DPIR_CT_params(sigma_float, max_iter=8,
                                                                               lip_cons=lip_const.item())
            params_algo = {"stepsize": stepsize, "g_param": sigma_denoiser, "lambda": lamb}
            early_stop = False  # Do not stop algorithm with convergence criteria

            def custom_init(y, physic_op):
                x_init = physic_op.prox_l2(physic_op.A_adjoint(y), y, gamma=1e4)
                return {"est": (x_init, x_init)}

            # Instantiate the algorithm class to solve the IP
            algo = dinv.optim.optim_builder(
                iteration="HQS",
                prior=self.prior,
                data_fidelity=dinv.optim.data_fidelity.L2(),
                early_stop=early_stop,
                max_iter=max_iter,
                verbose=True,
                params_algo=params_algo,
                custom_init=custom_init
            )
            return algo(y, physics=physics)
        elif self.name == 'SWINIRx4':
            window_size = 8
            scale = 4
            _, _, h_old, w_old = y.size()
            h_pad = (h_old // window_size + 1) * window_size - h_old
            w_pad = (w_old // window_size + 1) * window_size - w_old
            img_lq = torch.cat([y, torch.flip(y, [2])], 2)[:, :, :h_old + h_pad, :]
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
            output = self.model(img_lq)
            output = output[..., :h_old * scale, :w_old * scale]
            output = self.circular_roll(output, -2, -2)
            # check shape of adjoint
            x_adj = physics.A_adjoint(y)
            output = output[..., :x_adj.size(-2), :x_adj.size(-1)]
            return output
        elif self.name == 'SWINIRx2':
            window_size = 8
            scale = 2
            _, _, h_old, w_old = y.size()
            h_pad = (h_old // window_size + 1) * window_size - h_old
            w_pad = (w_old // window_size + 1) * window_size - w_old
            img_lq = torch.cat([y, torch.flip(y, [2])], 2)[:, :, :h_old + h_pad, :]
            img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
            output = self.model(img_lq)
            output = output[..., :h_old * scale, :w_old * scale]
            output = self.circular_roll(output, -1, -1)
            # check shape of adjoint
            x_adj = physics.A_adjoint(y)
            output = output[..., :x_adj.size(-2), :x_adj.size(-1)]
            return output
        else:
            return self.model(y)


class EvalDataset(torch.utils.data.Dataset):
    """
    We expect that images are 480x480.
    """
    all_datasets = ["Natural", "MRI", "CT"]

    def __init__(self, dataset_name: str, device_str: str = "cpu") -> None:
        self.name = dataset_name
        self.device_str = device_str
        if self.name not in self.all_datasets:
            raise ValueError(f"{self.name} is unavailable.")
        if self.name == 'Natural':
            self.root = 'img_samples/LSDIR_samples'
            self.transform = transforms.Compose([transforms.ToTensor()])
            self.dataset = dinv.datasets.LsdirHR(root=self.root,
                                                 download=False,
                                                 transform=self.transform)
        elif self.name == 'MRI':
            self.root = 'img_samples/FastMRI_samples'
            self.transform = transforms.CenterCrop((640, 320))  # , pad_if_needed=True)
            self.dataset = Preprocessed_fastMRI(root=self.root,
                                                transform=self.transform,
                                                preprocess=False)
        elif self.name == "CT":
            self.root = 'img_samples/LIDC_IDRI_samples'
            self.transform = None
            self.dataset = Preprocessed_LIDCIDRI(root=self.root,
                                                 transform=self.transform)

    def __len__(self) -> int:
        return len(self.dataset)

    def __getitem__(self, idx: int) -> torch.Tensor:
        return self.dataset[idx].to(self.device_str)


class Metric():
    """Metrics and utilities."""
    all_metrics = ["PSNR", "SSIM", "LPIPS"]

    def __init__(self, metric_name: str, device_str: str = "cpu") -> None:
        self.name = metric_name
        if self.name not in self.all_metrics:
            raise ValueError(f"{self.name} is unavailable.")
        elif self.name == "PSNR":
            self.metric = dinv.loss.metric.PSNR()
        elif self.name == "SSIM":
            self.metric = dinv.loss.metric.SSIM()
        elif self.name == "LPIPS":
            self.metric = dinv.loss.metric.LPIPS(device=device_str)

    def __call__(self, x_net: torch.Tensor, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        # it may happen that x_net and x do not have the same size, in which case we take the minimum size of both
        if x_net.shape[-1] != x.shape[-1]:
            min_size = min(x_net.shape[-1], x.shape[-1])
            x_net_crop = x_net[..., x_net.shape[-2] // 2 - min_size // 2: x_net.shape[-2] // 2 + min_size // 2,
                         x_net.shape[-1] // 2 - min_size // 2: x_net.shape[-1] // 2 + min_size // 2]
            x_crop = x[..., x_net.shape[-2] // 2 - min_size // 2: x_net.shape[-2] // 2 + min_size // 2,
                     x_net.shape[-1] // 2 - min_size // 2: x_net.shape[-1] // 2 + min_size // 2]
        else:
            x_net_crop = x_net
            x_crop = x
        return self.metric(x_net_crop, x_crop)

    @classmethod
    def get_list_metrics(cls, metric_names: List[str], device_str: str = "cpu") -> List["Metric"]:
        l = []
        for metric_name in metric_names:
            l.append(cls(metric_name, device_str=device_str))
        return l