Spaces:
Running
on
T4
Running
on
T4
File size: 13,428 Bytes
12a4d59 66c926c 12a4d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
from pathlib import Path
import torch
from torch.func import vmap
from torch.utils.data import DataLoader
import deepinv as dinv
from deepinv.unfolded import unfolded_builder
from deepinv.utils.phantoms import RandomPhantomDataset, SheppLoganDataset
from deepinv.optim.optim_iterators import CPIteration, fStep, gStep
from deepinv.optim import Prior, DataFidelity
from deepinv.utils import TensorList
from physics.multiscale import MultiScaleLinearPhysics
from models.heads import Heads, Tails, InHead, OutTail, ConvChannels, SNRModule, EquivConvModule, EquivHeads
def get_PDNet_architecture(in_channels=[1, 2, 3], out_channels=[1, 2, 3], n_primal=3, n_dual=3, device='cuda'):
class PDNetIteration(CPIteration):
r"""Single iteration of learned primal dual.
We only redefine the fStep and gStep classes.
The forward method is inherited from the CPIteration class.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.g_step = gStepPDNet(**kwargs)
self.f_step = fStepPDNet(**kwargs)
def forward(
self, X, cur_data_fidelity, cur_prior, cur_params, y, physics, *args, **kwargs
):
r"""
Single iteration of the Chambolle-Pock algorithm.
:param dict X: Dictionary containing the current iterate and the estimated cost.
:param deepinv.optim.DataFidelity cur_data_fidelity: Instance of the DataFidelity class defining the current data_fidelity.
:param deepinv.optim.Prior cur_prior: Instance of the Prior class defining the current prior.
:param dict cur_params: dictionary containing the current parameters of the algorithm.
:param torch.Tensor y: Input data.
:param deepinv.physics.Physics physics: Instance of the physics modeling the data-fidelity term.
:return: Dictionary `{"est": (x, ), "cost": F}` containing the updated current iterate and the estimated current cost.
"""
x_prev, z_prev, u_prev = X["est"] # x : primal, z : relaxed primal, u : dual
BS, C_primal, H_primal, W_primal = x_prev.shape
_, C_dual, H_dual, W_dual = u_prev.shape
n_channels = C_primal // n_primal
K = lambda x: torch.cat(
[physics.A(x[:, i * n_channels:(i + 1) * n_channels, :, :]) for i in range(n_primal)], dim=1)
K_adjoint = lambda x: torch.cat(
[physics.A_adjoint(x[:, i * n_channels:(i + 1) * n_channels, :, :]) for i in range(n_dual)], dim=1)
u = self.f_step(u_prev, K(z_prev), cur_data_fidelity, y, physics, n_channels,
cur_params) # dual update (data_fid)
x = self.g_step(x_prev, K_adjoint(u), cur_prior, n_channels, cur_params) # primal update (prior)
z = x + cur_params["beta"] * (x - x_prev)
F = (
self.F_fn(x, cur_data_fidelity, cur_prior, cur_params, y, physics)
if self.has_cost
else None
)
return {"est": (x, z, u), "cost": F}
class fStepPDNet(fStep):
r"""
Dual update of the PDNet algorithm.
We write it as a proximal operator of the data fidelity term.
This proximal mapping is to be replaced by a trainable model.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, x, w, cur_data_fidelity, y, physics, n_channels, *args):
r"""
:param torch.Tensor x: Current first variable :math:`u`.
:param torch.Tensor w: Current second variable :math:`A z`.
:param deepinv.optim.data_fidelity cur_data_fidelity: Instance of the DataFidelity class defining the current data fidelity term.
:param torch.Tensor y: Input data.
"""
return cur_data_fidelity.prox(x, w, y, n_channels)
class gStepPDNet(gStep):
r"""
Primal update of the PDNet algorithm.
We write it as a proximal operator of the prior term.
This proximal mapping is to be replaced by a trainable model.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, x, w, cur_prior, n_channels, *args):
r"""
:param torch.Tensor x: Current first variable :math:`x`.
:param torch.Tensor w: Current second variable :math:`A^\top u`.
:param deepinv.optim.prior cur_prior: Instance of the Prior class defining the current prior.
"""
return cur_prior.prox(x, w, n_channels)
# %%
# Define the trainable prior and data fidelity terms.
# ---------------------------------------------------
# Prior and data-fidelity are respectively defined as subclass of :class:`deepinv.optim.Prior` and :class:`deepinv.optim.DataFidelity`.
# Their proximal operators are replaced by trainable models.
class PDNetPrior(Prior):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
def prox(self, x, w, n_channels):
# give to the model : full primal + premier de dual
dual_cond = w[:, 0:n_channels, :, :]
return self.model(x, dual_cond)
class PDNetDataFid(DataFidelity):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
def prox(self, x, w, y, n_channels):
# give to the model : full dual + deuxieme de primal + y = n_channel*n_dual + n_channel + n_channel
if n_primal > 1:
primal_cond = w[:, n_channels:(2 * n_channels), :, :]
else:
primal_cond = w[:, 0:n_channels, :, :]
return self.model(x, primal_cond, y)
# Unrolled optimization algorithm parameters
max_iter = 10
# Set up the data fidelity term. Each layer has its own data fidelity module.
in_channels_dual = [in_channel * n_dual + in_channel + in_channel for in_channel in in_channels]
out_channels_dual = [in_channel * n_dual for in_channel in in_channels]
in_channels_primal = [in_channel * n_primal + in_channel for in_channel in in_channels]
out_channels_primal = [in_channel * n_primal for in_channel in in_channels]
data_fidelity = [
PDNetDataFid(model=PDNet_DualBlock(in_channels=in_channels_dual, out_channels=out_channels_dual).to(device)) for
i in range(max_iter)
]
# Set up the trainable prior. Each layer has its own prior module.
prior = [
PDNetPrior(model=PDNet_PrimalBlock(in_channels=in_channels_primal, out_channels=out_channels_primal).to(device))
for i in range(max_iter)]
# %%
# Define the model.
# -------------------------------
def custom_init(y, physics):
x0 = physics.A_dagger(y).repeat(1, n_primal, 1, 1)
u0 = (0 * y).repeat(1, n_dual, 1, 1)
return {"est": (x0, x0, u0)}
def custom_output(X):
x = X["est"][0]
n_channels = x.shape[1] // n_primal
if n_primal > 1:
return X["est"][0][:, n_channels:(2 * n_channels), :, :]
else:
return X["est"][0][:, 0:n_channels, :, :]
# %%
# Define the unfolded trainable model.
# -------------------------------------
# The original paper of the learned primal dual algorithm the authors used the adjoint operator
# in the primal update. However, the same authors (among others) find in the paper
#
# A. Hauptmann, J. Adler, S. Arridge, O. Öktem,
# Multi-scale learned iterative reconstruction,
# IEEE Transactions on Computational Imaging 6, 843-856, 2020.
#
# that using a filtered gradient can improve both the training speed and reconstruction quality significantly.
# Following this approach, we use the filtered backprojection instead of the adjoint operator in the primal step.
model = unfolded_builder(
iteration=PDNetIteration(),
params_algo={"beta": 0.0},
data_fidelity=data_fidelity,
prior=prior,
max_iter=max_iter,
custom_init=custom_init,
get_output=custom_output,
)
return model.to(device)
def init_weights(m):
if isinstance(m, torch.nn.Linear):
torch.torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(0.0)
class PDNet_PrimalBlock(torch.nn.Module):
r"""
Primal block for the Primal-Dual unfolding model.
From https://arxiv.org/abs/1707.06474.
Primal variables are images of shape (batch_size, in_channels, height, width). The input of each
primal block is the concatenation of the current primal variable and the backprojected dual variable along
the channel dimension. The output of each primal block is the current primal variable.
:param int in_channels: number of input channels. Default: 6.
:param int out_channels: number of output channels. Default: 5.
:param int depth: number of convolutional layers in the block. Default: 3.
:param bool bias: whether to use bias in convolutional layers. Default: True.
:param int nf: number of features in the convolutional layers. Default: 32.
"""
def __init__(self, in_channels=[1, 2, 3], out_channels=[1, 2, 3], depth=3, bias=True, nf=32):
super(PDNet_PrimalBlock, self).__init__()
self.separate_head = isinstance(in_channels, list)
self.depth = depth
self.in_conv = InHead(in_channels, nf, bias=bias)
# self.m_head.apply(init_weights)
# self.in_conv = torch.nn.Conv2d(
# in_channels, nf, kernel_size=3, stride=1, padding=1, bias=bias
# )
self.in_conv.apply(init_weights)
self.conv_list = torch.nn.ModuleList(
[
torch.nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=bias)
for _ in range(self.depth - 2)
]
)
self.conv_list.apply(init_weights)
# self.out_conv = torch.nn.Conv2d(
# nf, out_channels, kernel_size=3, stride=1, padding=1, bias=bias
# )
self.out_conv = OutTail(nf, out_channels, bias=bias)
self.out_conv.apply(init_weights)
self.nl_list = torch.nn.ModuleList([torch.nn.PReLU() for _ in range(self.depth - 1)])
def forward(self, x, Atu):
r"""
Forward pass of the primal block.
:param torch.Tensor x: current primal variable.
:param torch.Tensor Atu: backprojected dual variable.
:return: (:class:`torch.Tensor`) the current primal variable.
"""
primal_channels = x.shape[1]
x_in = torch.cat((x, Atu), dim=1)
x_ = self.in_conv(x_in)
x_ = self.nl_list[0](x_)
for i in range(self.depth - 2):
x_l = self.conv_list[i](x_)
x_ = self.nl_list[i + 1](x_l)
return self.out_conv(x_, primal_channels) + x
class PDNet_DualBlock(torch.nn.Module):
r"""
Dual block for the Primal-Dual unfolding model.
From https://arxiv.org/abs/1707.06474.
Dual variables are images of shape (batch_size, in_channels, height, width). The input of each
primal block is the concatenation of the current dual variable with the projected primal variable and
the measurements. The output of each dual block is the current primal variable.
:param int in_channels: number of input channels. Default: 7.
:param int out_channels: number of output channels. Default: 5.
:param int depth: number of convolutional layers in the block. Default: 3.
:param bool bias: whether to use bias in convolutional layers. Default: True.
:param int nf: number of features in the convolutional layers. Default: 32.
"""
def __init__(self, in_channels=[1, 2, 3], out_channels=[6, 2, 3], depth=3, bias=True, nf=32):
super(PDNet_DualBlock, self).__init__()
self.depth = depth
self.in_conv = InHead(in_channels, nf, bias=bias)
# self.in_conv = torch.nn.Conv2d(
# in_channels, nf, kernel_size=3, stride=1, padding=1, bias=bias
# )
self.in_conv.apply(init_weights)
self.conv_list = torch.nn.ModuleList(
[
torch.nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=bias)
for _ in range(self.depth - 2)
]
)
self.conv_list.apply(init_weights)
self.out_conv = OutTail(nf, out_channels, bias=bias)
# self.out_conv = torch.nn.Conv2d(
# nf, out_channels, kernel_size=3, stride=1, padding=1, bias=bias
# )
self.out_conv.apply(init_weights)
self.nl_list = torch.nn.ModuleList([torch.nn.PReLU() for _ in range(self.depth - 1)])
def forward(self, u, Ax_cur, y):
r"""
Forward pass of the dual block.
:param torch.Tensor u: current dual variable.
:param torch.Tensor Ax_cur: projection of the primal variable.
:param torch.Tensor y: measurements.
"""
dual_channels = u.shape[1]
x_in = torch.cat((u, Ax_cur, y), dim=1)
x_ = self.in_conv(x_in)
x_ = self.nl_list[0](x_)
for i in range(self.depth - 2):
x_l = self.conv_list[i](x_)
x_ = self.nl_list[i + 1](x_l)
return self.out_conv(x_, dual_channels) + u |