Spaces:
Sleeping
Sleeping
File size: 14,411 Bytes
12a4d59 52893ae 12a4d59 52893ae 12a4d59 33dc149 12a4d59 cd12993 12a4d59 af9162a 12a4d59 ba74db2 12a4d59 ece0ce5 12a4d59 ece0ce5 12a4d59 ba74db2 12a4d59 501b516 12a4d59 501b516 12a4d59 33dc149 12a4d59 501b516 12a4d59 a983c72 12a4d59 744ad2f 12a4d59 744ad2f 33dc149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
DEVICE_STR = 'cuda'
### Gradio Utils
def generate_imgs(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (3, 256, 256)
x = x.unsqueeze(0) # shape : (1, 3, 256, 256)
with torch.no_grad():
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat
out = model(y=y, physics=physics.physics)
out_baseline = baseline(y=y, physics=physics.physics)
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI" or "SR" in physics.name:
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
def update_random_idx_and_generate_imgs(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset))
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs(dataset,
idx,
model,
baseline,
physics,
use_gen,
metrics)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def save_imgs(dataset: EvalDataset, idx: int, physics: PhysicsWithGenerator,
model_a: EvalModel | BaselineModel, model_b: EvalModel | BaselineModel,
x: Image.Image, y: Image.Image,
out_a: Image.Image, out_b: Image.Image,
y_metrics_str: str,
out_a_metric_str : str, out_b_metric_str: str) -> None:
### PROCESSES STR
physics_params_str = ""
for param_name, param_value in physics.saved_params["updatable_params"].items():
physics_params_str += f"{param_name}_{param_value}-"
physics_params_str = physics_params_str[:-1] if physics_params_str.endswith("-") else physics_params_str
y_metrics_str = y_metrics_str.replace(" = ", "_").replace("\n", "-")
y_metrics_str = y_metrics_str[:-1] if y_metrics_str.endswith("-") else y_metrics_str
out_a_metric_str = out_a_metric_str.replace(" = ", "_").replace("\n", "-")
out_a_metric_str = out_a_metric_str[:-1] if out_a_metric_str.endswith("-") else out_a_metric_str
out_b_metric_str = out_b_metric_str.replace(" = ", "_").replace("\n", "-")
out_b_metric_str = out_b_metric_str[:-1] if out_b_metric_str.endswith("-") else out_b_metric_str
save_path = SAVE_IMG_DIR / f"{dataset.name}+{idx}+{physics.name}+{physics_params_str}+{y_metrics_str}+{model_a.name}+{out_a_metric_str}+{model_b.name}+{out_b_metric_str}.png"
titles = [f"{dataset.name}[{idx}]",
f"y = {physics.name}(x)",
f"{model_a.name}",
f"{model_b.name}"]
# Pil object -> torch.Tensor
to_tensor = transforms.ToTensor()
x = to_tensor(x)
y = to_tensor(y)
out_a = to_tensor(out_a)
out_b = to_tensor(out_b)
dinv.utils.plot([x, y, out_a, out_b], titles=titles, show=False, save_fn=save_path)
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_generator_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
def get_model(model_name, ckpt_pth):
if model_name in BaselineModel.all_baselines:
return get_baseline_model_on_DEVICE_STR(model_name)
else:
return get_eval_model_on_DEVICE_STR(model_name, ckpt_pth)
### Gradio Blocks interface
# Define custom CSS
custom_css = """
.fixed-textbox textarea {
height: 90px !important; /* Adjust height to fit exactly 4 lines */
overflow: scroll; /* Add a scroll bar if necessary */
resize: none; /* User can resize vertically the textbox */
}
"""
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
gr.Markdown("## " + title)
# Loading things
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", "")) # lambda expression to instanciate a callable in a gr.State
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DRUNET")) # lambda expression to instanciate a callable in a gr.State
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_generator_on_DEVICE_STR("MotionBlur_easy")) # lambda expression to instanciate a callable in a gr.State
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
@gr.render(inputs=[model_a_placeholder, model_b_placeholder, dataset_placeholder, physics_placeholder, metrics_placeholder])
def dynamic_layout(model_a, model_b, dataset, physics, metrics):
### LAYOUT
model_a_name = model_a.base_name
model_a_full_name = model_a.name
model_b_name = model_b.base_name
model_b_full_name = model_b.name
dataset_name = dataset.name
physics_name = physics.name
metric_names = [metric.name for metric in metrics]
# Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=False)
physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
with gr.Column():
y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],)
with gr.Row():
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="List of EvalDataset",
value=dataset_name,
scale=2)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1)
choose_physics = gr.Radio(choices=PhysicsWithGenerator.all_physics,
label="List of PhysicsWithGenerator",
value=physics_name)
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key",
scale=2)
value_text = gr.Textbox(label="Update Value", scale=2)
with gr.Column(scale=1):
update_button = gr.Button("Update Param")
use_generator_button = gr.Checkbox(label="Use param generator")
with gr.Column():
with gr.Row():
with gr.Column():
model_a_out = gr.Image(label=f"{model_a_full_name} OUTPUT", interactive=False)
out_a_metric = gr.Textbox(label="Metrics(model_a(y), x)", elem_classes=["fixed-textbox"])
load_model_a = gr.Button("Load model A...", scale=1)
with gr.Column():
model_b_out = gr.Image(label=f"{model_b_full_name} OUTPUT", interactive=False)
out_b_metric = gr.Textbox(label="Metrics(model_b(y), x)", elem_classes=["fixed-textbox"])
load_model_b = gr.Button("Load model B...", scale=1)
with gr.Row():
choose_model_a = gr.Dropdown(choices=EvalModel.all_models + BaselineModel.all_baselines,
label="List of Model A",
value=model_a_name,
scale=2)
path_a_str = gr.Textbox(value=model_a.ckpt_pth, label="Checkpoint path", scale=3)
with gr.Row():
choose_model_b = gr.Dropdown(choices=EvalModel.all_models + BaselineModel.all_baselines,
label="List of Model B",
value=model_b_name,
scale=2)
path_b_str = gr.Textbox(value=model_b.ckpt_pth, label="Checkpoint path", scale=3)
# Components: Load Metric + Load/Save Buttons
with gr.Row():
with gr.Column():
choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics,
value=metric_names,
label="Choose metrics you are interested")
with gr.Column():
load_button = gr.Button("Load images...")
load_random_button = gr.Button("Load randomly...")
save_button = gr.Button("Save images...")
### Event listeners
choose_dataset.change(fn=get_dataset_on_DEVICE_STR,
inputs=choose_dataset,
outputs=dataset_placeholder)
choose_physics.change(fn=get_physics_generator_on_DEVICE_STR,
inputs=choose_physics,
outputs=physics_placeholder)
update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params)
load_model_a.click(fn=get_model,
inputs=[choose_model_a, path_a_str],
outputs=model_a_placeholder)
load_model_b.click(fn=get_model,
inputs=[choose_model_b, path_b_str],
outputs=model_b_placeholder)
choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
inputs=choose_metrics,
outputs=metrics_placeholder)
load_button.click(fn=generate_imgs,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=update_random_idx_and_generate_imgs,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
interface.launch()
|