File size: 2,449 Bytes
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from pathlib import Path
from typing import Callable, Optional
import os

import torch
from torch.utils.data import Dataset


class Preprocessed_fastMRI(torch.utils.data.Dataset):
    """FastMRI from preprocessed data for faster lading."""

    def __init__(
        self,
        root: str,
        transform: Optional[Callable] = None,
        preprocess: bool = False,
    ) -> None:
        self.root = root
        self.transform = transform
        self.preprocess = preprocess

        # should contain all the information to load a data sample from the storage
        self.sample_identifiers = []

        # append all filenames in self.root ending with .pt
        for root, _, files in os.walk(self.root):
            for file in files:
                if file.endswith(".pt"):
                    self.sample_identifiers.append(file)

    def __len__(self) -> int:
        return len(self.sample_identifiers)

    def __getitem__(self, idx: int):
        fname = self.sample_identifiers[idx]

        tensor = torch.load(os.path.join(self.root, fname), weights_only=True)
        img = tensor['data'].float()

        if self.transform is not None:
            img = self.transform(img)

        if not self.preprocess:
            return img

        else:
            # remove extension and prefix from filename
            fname = Path(fname).stem
            return img, fname


class Preprocessed_LIDCIDRI(torch.utils.data.Dataset):
    """FastMRI from preprocessed data for faster lading."""

    def __init__(
        self,
        root: str,
        transform: Optional[Callable] = None,
    ) -> None:
        self.root = root
        self.transform = transform

        # should contain all the information to load a data sample from the storage
        self.sample_identifiers = []

        # append all filenames in self.root ending with .pt
        for root, _, files in os.walk(self.root):
            for file in files:
                if file.endswith(".pt"):
                    self.sample_identifiers.append(file)

    def __len__(self) -> int:
        return len(self.sample_identifiers)

    def __getitem__(self, idx: int):
        fname = self.sample_identifiers[idx]

        tensor = torch.load(os.path.join(self.root, fname), weights_only=True)
        img = tensor['data'].float()

        if self.transform is not None:
            img = self.transform(img)

        img = img.unsqueeze(0)  # add channel dim