Spaces:
Sleeping
Sleeping
File size: 11,280 Bytes
12a4d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import numpy as np
import deepinv
import torch
import deepinv as dinv
from deepinv.optim.data_fidelity import L2
from deepinv.optim.prior import PnP
from deepinv.unfolded import unfolded_builder
import copy
import deepinv.optim.utils
class PoissonGaussianDistance(dinv.optim.Distance):
r"""
Implementation of :math:`\distancename` as the normalized :math:`\ell_2` norm
.. math::
f(x) = (x-y)^{T}\Sigma_y(x-y)
with :math:`\Sigma_y=\text{diag}(gamma y + \sigma^2)`
:param float sigma: Gaussian noise parameter. Default: 1.
:param float gain: Poisson noise parameter. Default 0.
"""
def __init__(self, sigma=1.0, gain=0.):
super().__init__()
self.sigma = sigma
self.gain = gain
def fn(self, x, y, *args, **kwargs):
r"""
Computes the distance :math:`\distance{x}{y}` i.e.
.. math::
\distance{x}{y} = \frac{1}{2}\|x-y\|^2
:param torch.Tensor u: Variable :math:`x` at which the data fidelity is computed.
:param torch.Tensor y: Data :math:`y`.
:return: (:class:`torch.Tensor`) data fidelity :math:`\datafid{u}{y}` of size `B` with `B` the size of the batch.
"""
norm = 1.0 / (self.sigma**2 + y * self.gain)
z = (x - y) * norm
d = 0.5 * torch.norm(z.reshape(z.shape[0], -1), p=2, dim=-1) ** 2
return d
def grad(self, x, y, *args, **kwargs):
r"""
Computes the gradient of :math:`\distancename`, that is :math:`\nabla_{x}\distance{x}{y}`, i.e.
.. math::
\nabla_{x}\distance{x}{y} = \frac{1}{\sigma^2} x-y
:param torch.Tensor x: Variable :math:`x` at which the gradient is computed.
:param torch.Tensor y: Observation :math:`y`.
:return: (:class:`torch.Tensor`) gradient of the distance function :math:`\nabla_{x}\distance{x}{y}`.
"""
norm = 1.0 / (self.sigma**2 + y * self.gain)
return (x - y) * norm
def prox(self, x, y, *args, gamma=1.0, **kwargs):
r"""
Proximal operator of :math:`\gamma \distance{x}{y} = \frac{\gamma}{2 \sigma^2} \|x-y\|^2`.
Computes :math:`\operatorname{prox}_{\gamma \distancename}`, i.e.
.. math::
\operatorname{prox}_{\gamma \distancename} = \underset{u}{\text{argmin}} \frac{\gamma}{2\sigma^2}\|u-y\|_2^2+\frac{1}{2}\|u-x\|_2^2
:param torch.Tensor x: Variable :math:`x` at which the proximity operator is computed.
:param torch.Tensor y: Data :math:`y`.
:param float gamma: thresholding parameter.
:return: (:class:`torch.Tensor`) proximity operator :math:`\operatorname{prox}_{\gamma \distancename}(x)`.
"""
norm = 1.0 / (self.sigma**2 + y * self.gain)
return (x + norm * gamma * y) / (1 + gamma * norm)
class PoissonGaussianDataFidelity(dinv.optim.DataFidelity):
r"""
Implementation of the data-fidelity as the normalized :math:`\ell_2` norm
.. math::
f(x) = \|\forw{x}-y\|^2_{\text{diag}(\sigma^2 + y \gamma)}
It can be used to define a log-likelihood function associated with Poisson Gaussian noise
by setting an appropriate noise level :math:`\sigma`.
:param float sigma: Standard deviation of the noise to be used as a normalisation factor.
:param float gain: Gain factor of the data-fidelity term.
"""
def __init__(self, sigma=1.0, gain=0.):
super().__init__()
self.d = PoissonGaussianDistance(sigma=sigma, gain=gain)
self.gain = gain
self.sigma = sigma
def prox(self, x, y, physics, gamma=1.0, *args, **kwargs):
r"""
Proximal operator of :math:`\gamma \datafid{Ax}{y} = \frac{\gamma}{2\sigma^2}\|Ax-y\|^2`.
Computes :math:`\operatorname{prox}_{\gamma \datafidname}`, i.e.
.. math::
\operatorname{prox}_{\gamma \datafidname} = \underset{u}{\text{argmin}} \frac{\gamma}{2\sigma^2}\|Au-y\|_2^2+\frac{1}{2}\|u-x\|_2^2
:param torch.Tensor x: Variable :math:`x` at which the proximity operator is computed.
:param torch.Tensor y: Data :math:`y`.
:param deepinv.physics.Physics physics: physics model.
:param float gamma: stepsize of the proximity operator.
:return: (:class:`torch.Tensor`) proximity operator :math:`\operatorname{prox}_{\gamma \datafidname}(x)`.
"""
assert isinstance(physics, dinv.physics.LinearPhysics), "not implemented for non-linear physics"
if isinstance(physics, dinv.physics.StackedPhysics):
device=y[0].device
noise_model = physics[-1].noise_model
else:
device=y.device
noise_model = physics.noise_model
if hasattr(noise_model, "gain"):
self.gain = noise_model.gain.detach().to(device)
if hasattr(noise_model, "sigma"):
self.sigma = noise_model.sigma.detach().to(device)
# Ensure sigma is a tensor and reshape if necessary
if isinstance(self.sigma, float):
self.sigma = torch.tensor([self.sigma], device=device)
if self.sigma.ndim == 0 :
self.sigma = self.sigma.unsqueeze(0).to(device)
# Ensure gain is a tensor and reshape if necessary
if isinstance(self.gain, float):
self.gain = torch.tensor([self.gain], device=device)
if self.gain.ndim == 0 :
self.gain = self.gain.unsqueeze(0).to(device)
if self.gain[0] > 0 :
norm = gamma / (self.sigma[:, None, None, None]**2 + y * self.gain[:, None, None, None])
else :
norm = gamma / (self.sigma[:, None, None, None]**2)
A = lambda u: physics.A_adjoint(physics.A(u)*norm) + u
b = physics.A_adjoint(norm*y) + x
return deepinv.optim.utils.conjugate_gradient(A, b, init=x, max_iter=3, tol=1e-3)
from deepinv.optim.optim_iterators import OptimIterator, fStep, gStep
class myHQSIteration(OptimIterator):
r"""
Single iteration of half-quadratic splitting.
Class for a single iteration of the Half-Quadratic Splitting (HQS) algorithm for minimising :math:`f(x) + \lambda \regname(x)`.
The iteration is given by
.. math::
\begin{equation*}
\begin{aligned}
u_{k} &= \operatorname{prox}_{\gamma f}(x_k) \\
x_{k+1} &= \operatorname{prox}_{\sigma \lambda \regname}(u_k).
\end{aligned}
\end{equation*}
where :math:`\gamma` and :math:`\sigma` are step-sizes. Note that this algorithm does not converge to
a minimizer of :math:`f(x) + \lambda \regname(x)`, but instead to a minimizer of
:math:`\gamma\, ^1f+\sigma \lambda \regname`, where :math:`^1f` denotes
the Moreau envelope of :math:`f`
"""
def __init__(self, **kwargs):
super(myHQSIteration, self).__init__(**kwargs)
self.g_step = mygStepHQS(**kwargs)
self.f_step = myfStepHQS(**kwargs)
self.requires_prox_g = True
class myfStepHQS(fStep):
r"""
HQS fStep module.
"""
def __init__(self, **kwargs):
super(myfStepHQS, self).__init__(**kwargs)
def forward(self, x, cur_data_fidelity, cur_params, y, physics):
r"""
Single proximal step on the data-fidelity term :math:`f`.
:param torch.Tensor x: Current iterate :math:`x_k`.
:param deepinv.optim.DataFidelity cur_data_fidelity: Instance of the DataFidelity class defining the current data_fidelity.
:param dict cur_params: Dictionary containing the current parameters of the algorithm.
:param torch.Tensor y: Input data.
:param deepinv.physics.Physics physics: Instance of the physics modeling the data-fidelity term.
"""
return cur_data_fidelity.prox(x, y, physics, gamma=cur_params["stepsize"])
class mygStepHQS(gStep):
r"""
HQS gStep module.
"""
def __init__(self, **kwargs):
super(mygStepHQS, self).__init__(**kwargs)
def forward(self, x, cur_prior, cur_params):
r"""
Single proximal step on the prior term :math:`\lambda \regname`.
:param torch.Tensor x: Current iterate :math:`x_k`.
:param dict cur_prior: Class containing the current prior.
:param dict cur_params: Dictionary containing the current parameters of the algorithm.
"""
return cur_prior.prox(
x,
sigma_denoiser = cur_params["g_param"],
gain_denoiser = cur_params["gain_param"],
gamma=cur_params["lambda"] * cur_params["stepsize"],
)
def get_unrolled_architecture(gain_param_init = 1e-3, weight_tied = True, model = None, device = 'cpu'):
# Unrolled optimization algorithm parameters
max_iter = 8 # number of unfolded layers
# Select the data fidelity term
# Set up the trainable denoising prior
# Here the prior model is common for all iterations
if model is not None :
denoiser = model.to(device)
else :
denoiser = dinv.models.DRUNet(
pretrained= '/lustre/fswork/projects/rech/nyd/commun/mterris/base_checkpoints/drunet_deepinv_color_finetune_22k.pth',
).to(device)
class myPnP(PnP):
r"""
Gradient-Step Denoiser prior.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def prox(self, x, sigma_denoiser, gain_denoiser, *args, **kwargs):
if not self.training:
pad = (-x.size(-2) % 8, -x.size(-1) % 8)
x = torch.nn.functional.pad(x, (0, pad[1], 0, pad[0]), mode="constant")
out = self.denoiser(x, sigma=sigma_denoiser, gamma=gain_denoiser)
if not self.training:
out = out[..., : -pad[0] or None, : -pad[1] or None]
return out
data_fidelity = PoissonGaussianDataFidelity()
if not weight_tied :
prior = [myPnP(denoiser=copy.deepcopy(denoiser)) for i in range(max_iter)]
else :
prior = [myPnP(denoiser=denoiser)]
def get_DPIR_params(noise_level_img, max_iter=8):
r"""
Default parameters for the DPIR Plug-and-Play algorithm.
:param float noise_level_img: Noise level of the input image.
"""
s1 = 49.0 / 255.0
s2 = noise_level_img
sigma_denoiser = np.logspace(np.log10(s1), np.log10(s2), max_iter).astype(
np.float32
)
stepsize = (sigma_denoiser / max(0.01, noise_level_img)) ** 2
lamb = 1 / 0.23
return list(sigma_denoiser), list(lamb * stepsize)
sigma_denoiser, stepsize = get_DPIR_params(0.05)
stepsize = torch.tensor(stepsize) * (torch.tensor(sigma_denoiser)**2)
gain_denoiser = [gain_param_init]*len(sigma_denoiser)
params_algo = {"stepsize": stepsize, "g_param": sigma_denoiser, "gain_param": gain_denoiser}
trainable_params = [
"g_param",
"gain_param"
"stepsize",
] # define which parameters from 'params_algo' are trainable
# Define the unfolded trainable model.
model = unfolded_builder(
iteration=myHQSIteration(),
params_algo=params_algo.copy(),
trainable_params=trainable_params,
data_fidelity=data_fidelity,
max_iter=max_iter,
prior=prior,
device=device,
)
return model.to(device)
|