File size: 13,038 Bytes
12a4d59
 
 
 
 
 
 
52893ae
12a4d59
52893ae
12a4d59
 
 
 
 
 
33dc149
 
 
12a4d59
cd12993
 
f4e9220
12a4d59
 
 
 
af9162a
12a4d59
 
 
ba74db2
12a4d59
 
 
ece0ce5
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece0ce5
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e9220
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e9220
12a4d59
f4e9220
 
 
 
 
 
 
 
 
 
12a4d59
 
 
 
ba74db2
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
501b516
12a4d59
 
 
501b516
12a4d59
 
f4e9220
33dc149
f4e9220
12a4d59
501b516
f4e9220
 
12a4d59
 
 
 
a983c72
12a4d59
 
 
 
 
 
 
 
 
 
f4e9220
12a4d59
 
 
 
f4e9220
12a4d59
 
 
f4e9220
 
12a4d59
f4e9220
12a4d59
f4e9220
 
12a4d59
f4e9220
 
12a4d59
f4e9220
 
 
 
 
 
 
12a4d59
f4e9220
12a4d59
 
 
f4e9220
 
12a4d59
f4e9220
744ad2f
12a4d59
 
 
 
f4e9220
12a4d59
f4e9220
12a4d59
 
 
 
f4e9220
 
 
12a4d59
 
 
 
f4e9220
12a4d59
f4e9220
 
12a4d59
 
 
 
a329216
12a4d59
744ad2f
a329216
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List

import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms

from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric


DEVICE_STR = 'cuda'


### Gradio Utils
def generate_imgs(dataset: EvalDataset, idx: int,
                  model: EvalModel, baseline: BaselineModel,
                  physics: PhysicsWithGenerator, use_gen: bool,
                  metrics: List[Metric]):
    ### Load 1 image
    x = dataset[idx]    # shape : (3, 256, 256)
    x = x.unsqueeze(0)  # shape : (1, 3, 256, 256)

    with torch.no_grad():
        ### Compute y
        y = physics(x, use_gen)  # possible reduction in img shape due to Blurring

        ### Compute x_hat
        out = model(y=y, physics=physics.physics)
        out_baseline = baseline(y=y, physics=physics.physics)

        ### Process tensors before metric computation
        if "Blur" in physics.name:
            w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
            h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2

            x = x[..., w_1:w_2, h_1:h_2]
            out = out[..., w_1:w_2, h_1:h_2]
            if out_baseline.shape != out.shape:
                out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]

        ### Metrics
        metrics_y = ""
        metrics_out = ""
        metrics_out_baseline = ""
        for metric in metrics:
            if y.shape == x.shape:
                metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
            metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
            metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"

    ### Process y when y shape is different from x shape
    if physics.name == "MRI" or "SR" in physics.name:
        y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
    else:
        y_plot = y.clone()

    ### Processing images for plotting :
    #     - clip value outside of [0,1]
    #     - shape (1, C, H, W) -> (C, H, W)
    #     - torch.Tensor object -> Pil object
    process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
    to_pil = transforms.ToPILImage()
    x = to_pil(process_img(x)[0].to('cpu'))
    y = to_pil(process_img(y_plot)[0].to('cpu'))
    out = to_pil(process_img(out)[0].to('cpu'))
    out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))


    return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline

def update_random_idx_and_generate_imgs(dataset: EvalDataset, 
                                        model: EvalModel, 
                                        baseline: BaselineModel, 
                                        physics: PhysicsWithGenerator,
                                        use_gen: bool,
                                        metrics: List[Metric]):
    idx = random.randint(0, len(dataset)-1)
    x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs(dataset, 
                                                                                                            idx, 
                                                                                                            model, 
                                                                                                            baseline, 
                                                                                                            physics, 
                                                                                                            use_gen, 
                                                                                                            metrics)
    return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline

def save_imgs(dataset: EvalDataset, idx: int, physics: PhysicsWithGenerator,
              model_a: EvalModel | BaselineModel, model_b: EvalModel | BaselineModel,
              x: Image.Image, y: Image.Image,
              out_a: Image.Image, out_b: Image.Image,
              y_metrics_str: str,
              out_a_metric_str : str, out_b_metric_str: str) -> None:

    ### PROCESSES STR
    physics_params_str = ""
    for param_name, param_value in physics.saved_params["updatable_params"].items():
        physics_params_str += f"{param_name}_{param_value}-"
    physics_params_str = physics_params_str[:-1] if physics_params_str.endswith("-") else physics_params_str
    y_metrics_str = y_metrics_str.replace(" = ", "_").replace("\n", "-")
    y_metrics_str = y_metrics_str[:-1] if y_metrics_str.endswith("-") else y_metrics_str
    out_a_metric_str = out_a_metric_str.replace(" = ", "_").replace("\n", "-")
    out_a_metric_str = out_a_metric_str[:-1] if out_a_metric_str.endswith("-") else out_a_metric_str
    out_b_metric_str = out_b_metric_str.replace(" = ", "_").replace("\n", "-")
    out_b_metric_str = out_b_metric_str[:-1] if out_b_metric_str.endswith("-") else out_b_metric_str

    save_path = SAVE_IMG_DIR / f"{dataset.name}+{idx}+{physics.name}+{physics_params_str}+{y_metrics_str}+{model_a.name}+{out_a_metric_str}+{model_b.name}+{out_b_metric_str}.png"
    titles = [f"{dataset.name}[{idx}]",
              f"y = {physics.name}(x)",
              f"{model_a.name}",
              f"{model_b.name}"]

    # Pil object -> torch.Tensor
    to_tensor = transforms.ToTensor()
    x = to_tensor(x)
    y = to_tensor(y)
    out_a = to_tensor(out_a)
    out_b = to_tensor(out_b)

    dinv.utils.plot([x, y, out_a, out_b], titles=titles, show=False, save_fn=save_path)

get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)

def get_physics(physics_name):
    if physics_name == 'MRI':
        baseline = get_baseline_model_on_DEVICE_STR('DPIR_MRI')
    elif physics_name == 'CT':
        baseline = get_baseline_model_on_DEVICE_STR('DPIR_CT')
    else:
        baseline = get_baseline_model_on_DEVICE_STR('DPIR')
    return get_physics_on_DEVICE_STR(physics_name), baseline

def get_model(model_name, ckpt_pth):
    if model_name in BaselineModel.all_baselines:
        return get_baseline_model_on_DEVICE_STR(model_name)
    else:
        return get_eval_model_on_DEVICE_STR(model_name, ckpt_pth)


### Gradio Blocks interface

# Define custom CSS
custom_css = """
.fixed-textbox textarea {
    height: 90px !important;  /* Adjust height to fit exactly 4 lines */
    overflow: scroll;         /* Add a scroll bar if necessary */
    resize: none;             /* User can resize vertically the textbox */
}
"""

title = "Inverse problem playground"  # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
    gr.Markdown("## " + title)

    # Loading things
    model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))  # lambda expression to instanciate a callable in a gr.State
    model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))  # lambda expression to instanciate a callable in a gr.State
    dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
    physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))  # lambda expression to instanciate a callable in a gr.State
    metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))

    @gr.render(inputs=[dataset_placeholder, physics_placeholder, metrics_placeholder])
    def dynamic_layout(dataset, physics, metrics):
        ### LAYOUT
        dataset_name = dataset.name
        physics_name = physics.name
        metric_names = [metric.name for metric in metrics]

        # Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=False)
                        physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
                    with gr.Column():
                        y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
                        y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],)

                choose_physics = gr.Radio(choices=PhysicsWithGenerator.all_physics,
                                          label="List of PhysicsWithGenerator",
                                          value=physics_name)
                with gr.Row():
                    key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
                                               label="Updatable Parameter Key",
                                               scale=2)
                    value_text = gr.Textbox(label="Update Value", scale=2)
                    update_button = gr.Button("Manually update parameter value", scale=1)

            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
                        out_a_metric = gr.Textbox(label="Metrics(RAM(y, physics), x)", elem_classes=["fixed-textbox"])
                    with gr.Column():
                        model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
                        out_b_metric = gr.Textbox(label="Metrics(DPIR(y, physics), x)", elem_classes=["fixed-textbox"])
                with gr.Row():
                    choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
                                              label="List of EvalDataset",
                                              value=dataset_name,
                                              scale=2)
                    idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1)

        # Components: Load Metric + Load image Buttons
        with gr.Row():
            with gr.Column(scale=2):
                choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics,
                                                  value=metric_names,
                                                  label="Choose metrics you are interested")
            use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
            with gr.Column(scale=1):
                load_button = gr.Button("Load images...")
	                load_random_button = gr.Button("Load randomly...")

        ### Event listeners
        choose_dataset.change(fn=get_dataset_on_DEVICE_STR,
                              inputs=choose_dataset,
                              outputs=dataset_placeholder)
        choose_physics.change(fn=get_physics,
                              inputs=choose_physics,
                              outputs=[physics_placeholder, model_b_placeholder])
        update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params)
        choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
                              inputs=choose_metrics,
                              outputs=metrics_placeholder)
        load_button.click(fn=generate_imgs,
                          inputs=[dataset_placeholder,
                                  idx_slider,
                                  model_a_placeholder,
                                  model_b_placeholder,
                                  physics_placeholder,
                                  use_generator_button,
                                  metrics_placeholder],
                          outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
        load_random_button.click(fn=update_random_idx_and_generate_imgs,
                                 inputs=[dataset_placeholder,
                                         model_a_placeholder,
                                         model_b_placeholder,
                                         physics_placeholder,
                                         use_generator_button,
                                         metrics_placeholder],
                                 outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])

interface.launch()