File size: 10,832 Bytes
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
from models.blocks import AffineConv2d, downsample_strideconv, upsample_convtranspose

class InHead(torch.nn.Module):
    def __init__(self, in_channels_list, out_channels, mode="", bias=False, input_layer=False):
        super(InHead, self).__init__()
        self.in_channels_list = in_channels_list
        self.input_layer = input_layer
        for i, in_channels in enumerate(in_channels_list):
            conv = AffineConv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                bias=bias,
                mode=mode,
                kernel_size=3,
                stride=1,
                padding=1,
                padding_mode="zeros",
            )
            setattr(self, f"conv{i}", conv)

    def forward(self, x):
        in_channels = x.size(1) - 1 if self.input_layer else x.size(1)

        # find index
        i = self.in_channels_list.index(in_channels)
        x = getattr(self, f"conv{i}")(x)

        return x

class OutTail(torch.nn.Module):
    def __init__(self, in_channels, out_channels_list, mode="", bias=False):
        super(OutTail, self).__init__()
        self.in_channels = in_channels
        self.out_channels_list = out_channels_list
        for i, out_channels in enumerate(out_channels_list):
            conv = AffineConv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                bias=bias,
                mode=mode,
                kernel_size=3,
                stride=1,
                padding=1,
                padding_mode="zeros",
            )
            setattr(self, f"conv{i}", conv)

    def forward(self, x, out_channels):
        i = self.out_channels_list.index(out_channels)
        x = getattr(self, f"conv{i}")(x)

        return x

# TODO: check that the heads are compatible with the old implementation
class Heads(torch.nn.Module):
    def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, c_add=0, relu_in=False, skip_in=False):
        super(Heads, self).__init__()
        self.in_channels_list = [c * (c_mult + c_add) for c in in_channels_list]
        self.scale = scale
        self.mode = mode
        for i, in_channels in enumerate(self.in_channels_list):
            setattr(self, f"head{i}", HeadBlock(in_channels, out_channels, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))

        if self.mode == "":
            self.nl = torch.nn.ReLU(inplace=False)
            if self.scale != 1:
                for i, in_channels in enumerate(in_channels_list):
                    setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))

    def forward(self, x):
        in_channels = x.size(1)
        i = self.in_channels_list.index(in_channels)

        if self.scale != 1:
            if self.mode == "bilinear":
                x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
            else:
                x = getattr(self, f"down{i}")(x)
                x = self.nl(x)

        # find index
        x = getattr(self, f"head{i}")(x)

        return x

class Tails(torch.nn.Module):
    def __init__(self, in_channels, out_channels_list, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, relu_in=False, skip_in=False):
        super(Tails, self).__init__()
        self.out_channels_list = out_channels_list
        self.scale = scale
        for i, out_channels in enumerate(out_channels_list):
            setattr(self, f"tail{i}", HeadBlock(in_channels, out_channels * c_mult, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))

        self.mode = mode
        if self.mode == "":
            self.nl = torch.nn.ReLU(inplace=False)
            if self.scale != 1:
                # self.up = upsample_convtranspose(out_channels, out_channels, bias=True, mode=str(self.scale))
                for i, out_channels in enumerate(out_channels_list):
                    setattr(self, f"up{i}", upsample_convtranspose(out_channels * c_mult, out_channels * c_mult, bias=bias, mode=str(self.scale)))

    def forward(self, x, out_channels):
        i = self.out_channels_list.index(out_channels)
        x = getattr(self, f"tail{i}")(x)
        # find index
        if self.scale != 1:
            if self.mode == "bilinear":
                x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode='bilinear', align_corners=False)
            else:
                x = getattr(self, f"up{i}")(x)

        return x

class ConvChannels(torch.nn.Module):
    """
    TODO: remplace this with convconv
    A method that only performs convolutional operations on the appropriate channels dim.
    """
    def __init__(self, channels_list, depth=2, bias=False, residual=False):
        super(ConvChannels, self).__init__()
        self.channels_list = channels_list
        self.residual = residual
        for i, channels in enumerate(channels_list):
            setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))
            setattr(self, f"nl{i}", torch.nn.ReLU())
            setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))

    def forward(self, x):
        i = self.channels_list.index(x.shape[1])
        u = getattr(self, f"conv{i}_1")(x)
        u = getattr(self, f"nl{i}")(u)
        u = getattr(self, f"conv{i}_2")(u)
        if self.residual:
            u = x + u
        return u

class HeadBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, depth=2, relu_in=False, skip_in=False):
        super(HeadBlock, self).__init__()

        padding = kernel_size // 2

        c = out_channels if depth < 2 else in_channels

        self.convin = torch.nn.Conv2d(in_channels, c, kernel_size, padding=padding, bias=bias)
        self.zero_conv_skip = torch.nn.Conv2d(in_channels, c, 1, bias=False)
        self.depth = depth
        self.nl_1 = torch.nn.ReLU(inplace=False)
        self.nl_2 = torch.nn.ReLU(inplace=False)
        self.relu_in = relu_in
        self.skip_in = skip_in

        for i in range(depth-1):
            if i < depth - 2:
                c_in, c = in_channels, in_channels
            else:
                c_in, c = in_channels, out_channels

            setattr(self, f"conv1{i}", torch.nn.Conv2d(c_in, c_in, kernel_size, padding=padding, bias=bias))
            setattr(self, f"conv2{i}", torch.nn.Conv2d(c_in, c, kernel_size, padding=padding, bias=bias))
            setattr(self, f"skipconv{i}", torch.nn.Conv2d(c_in, c, 1, bias=False))


    def forward(self, x):

        if self.skip_in and self.relu_in:
            x = self.nl_1(self.convin(x)) + self.zero_conv_skip(x)
        elif self.skip_in and not self.relu_in:
            x = self.convin(x) + self.zero_conv_skip(x)
        else:
            x = self.convin(x)

        for i in range(self.depth-1):
            aux = getattr(self, f"conv1{i}")(x)
            aux = self.nl_2(aux)
            aux_0 = getattr(self, f"conv2{i}")(aux)
            aux_1 = getattr(self, f"skipconv{i}")(x)
            x = aux_0 + aux_1

        return x


class SNRModule(torch.nn.Module):
    """
    A method that only performs convolutional operations on the appropriate channels dim.
    """
    def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64):
        super(SNRModule, self).__init__()
        self.channels_list = channels_list
        self.residual = residual
        for i, channels in enumerate(channels_list):
            setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels + 1, features, 3, bias=bias, padding=1))
            setattr(self, f"nl{i}", torch.nn.ReLU())
            setattr(self, f"conv{i}_2", torch.nn.Conv2d(features, out_channels, 3, bias=bias, padding=1))

    def forward(self, x0, sigma):
        i = self.channels_list.index(x0.shape[1])

        noise_level_map = (torch.ones((x0.size(0), 1, x0.size(2), x0.size(3)), device=x0.device) * sigma)
        x = torch.cat((x0, noise_level_map), 1)

        u = getattr(self, f"conv{i}_1")(x)
        u = getattr(self, f"nl{i}")(u)
        u = getattr(self, f"conv{i}_2")(u)

        den = u.pow(2).mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True).sqrt()
        u = u.abs() / (den + 1e-8)

        return u.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True)


class EquivConvModule(torch.nn.Module):
    """
    A method that only performs convolutional operations on the appropriate channels dim.
    """
    def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64, N=1):
        super(EquivConvModule, self).__init__()
        self.channels_list = [c * N for c in channels_list]
        self.residual = residual
        for i, channels in enumerate(channels_list):
            setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels * N, channels * N, 3, bias=bias, padding=1))
            setattr(self, f"nl{i}", torch.nn.ReLU())
            setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels * N, out_channels, 3, bias=bias, padding=1))

    def forward(self, x):

        i = self.channels_list.index(x.shape[1])

        u = getattr(self, f"conv{i}_1")(x)
        u = getattr(self, f"nl{i}")(u)
        u = getattr(self, f"conv{i}_2")(u)

        return u


class EquivHeads(torch.nn.Module):
    def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear"):
        super(EquivHeads, self).__init__()
        self.in_channels_list = in_channels_list
        self.scale = scale
        self.mode = mode
        for i, in_channels in enumerate(in_channels_list):
            setattr(self, f"head{i}", HeadBlock(in_channels + 1, out_channels, depth=depth, bias=bias))

        if self.mode == "":
            self.nl = torch.nn.ReLU(inplace=False)
            if self.scale != 1:
                for i, in_channels in enumerate(in_channels_list):
                    setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))

    def forward(self, x, sigma):
        in_channels = x.size(1)
        i = self.in_channels_list.index(in_channels)

        if self.scale != 1:
            if self.mode == "bilinear":
                x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
            else:
                x = getattr(self, f"down{i}")(x)
                x = self.nl(x)

        # concat noise level map
        noise_level_map = (torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device) * sigma)
        x = torch.cat((x, noise_level_map), 1)

        # find index
        x = getattr(self, f"head{i}")(x)

        return x