Spaces:
Sleeping
Sleeping
File size: 10,832 Bytes
12a4d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import torch
from models.blocks import AffineConv2d, downsample_strideconv, upsample_convtranspose
class InHead(torch.nn.Module):
def __init__(self, in_channels_list, out_channels, mode="", bias=False, input_layer=False):
super(InHead, self).__init__()
self.in_channels_list = in_channels_list
self.input_layer = input_layer
for i, in_channels in enumerate(in_channels_list):
conv = AffineConv2d(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
mode=mode,
kernel_size=3,
stride=1,
padding=1,
padding_mode="zeros",
)
setattr(self, f"conv{i}", conv)
def forward(self, x):
in_channels = x.size(1) - 1 if self.input_layer else x.size(1)
# find index
i = self.in_channels_list.index(in_channels)
x = getattr(self, f"conv{i}")(x)
return x
class OutTail(torch.nn.Module):
def __init__(self, in_channels, out_channels_list, mode="", bias=False):
super(OutTail, self).__init__()
self.in_channels = in_channels
self.out_channels_list = out_channels_list
for i, out_channels in enumerate(out_channels_list):
conv = AffineConv2d(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
mode=mode,
kernel_size=3,
stride=1,
padding=1,
padding_mode="zeros",
)
setattr(self, f"conv{i}", conv)
def forward(self, x, out_channels):
i = self.out_channels_list.index(out_channels)
x = getattr(self, f"conv{i}")(x)
return x
# TODO: check that the heads are compatible with the old implementation
class Heads(torch.nn.Module):
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, c_add=0, relu_in=False, skip_in=False):
super(Heads, self).__init__()
self.in_channels_list = [c * (c_mult + c_add) for c in in_channels_list]
self.scale = scale
self.mode = mode
for i, in_channels in enumerate(self.in_channels_list):
setattr(self, f"head{i}", HeadBlock(in_channels, out_channels, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
if self.mode == "":
self.nl = torch.nn.ReLU(inplace=False)
if self.scale != 1:
for i, in_channels in enumerate(in_channels_list):
setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
def forward(self, x):
in_channels = x.size(1)
i = self.in_channels_list.index(in_channels)
if self.scale != 1:
if self.mode == "bilinear":
x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
else:
x = getattr(self, f"down{i}")(x)
x = self.nl(x)
# find index
x = getattr(self, f"head{i}")(x)
return x
class Tails(torch.nn.Module):
def __init__(self, in_channels, out_channels_list, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, relu_in=False, skip_in=False):
super(Tails, self).__init__()
self.out_channels_list = out_channels_list
self.scale = scale
for i, out_channels in enumerate(out_channels_list):
setattr(self, f"tail{i}", HeadBlock(in_channels, out_channels * c_mult, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
self.mode = mode
if self.mode == "":
self.nl = torch.nn.ReLU(inplace=False)
if self.scale != 1:
# self.up = upsample_convtranspose(out_channels, out_channels, bias=True, mode=str(self.scale))
for i, out_channels in enumerate(out_channels_list):
setattr(self, f"up{i}", upsample_convtranspose(out_channels * c_mult, out_channels * c_mult, bias=bias, mode=str(self.scale)))
def forward(self, x, out_channels):
i = self.out_channels_list.index(out_channels)
x = getattr(self, f"tail{i}")(x)
# find index
if self.scale != 1:
if self.mode == "bilinear":
x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode='bilinear', align_corners=False)
else:
x = getattr(self, f"up{i}")(x)
return x
class ConvChannels(torch.nn.Module):
"""
TODO: remplace this with convconv
A method that only performs convolutional operations on the appropriate channels dim.
"""
def __init__(self, channels_list, depth=2, bias=False, residual=False):
super(ConvChannels, self).__init__()
self.channels_list = channels_list
self.residual = residual
for i, channels in enumerate(channels_list):
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))
setattr(self, f"nl{i}", torch.nn.ReLU())
setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))
def forward(self, x):
i = self.channels_list.index(x.shape[1])
u = getattr(self, f"conv{i}_1")(x)
u = getattr(self, f"nl{i}")(u)
u = getattr(self, f"conv{i}_2")(u)
if self.residual:
u = x + u
return u
class HeadBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, depth=2, relu_in=False, skip_in=False):
super(HeadBlock, self).__init__()
padding = kernel_size // 2
c = out_channels if depth < 2 else in_channels
self.convin = torch.nn.Conv2d(in_channels, c, kernel_size, padding=padding, bias=bias)
self.zero_conv_skip = torch.nn.Conv2d(in_channels, c, 1, bias=False)
self.depth = depth
self.nl_1 = torch.nn.ReLU(inplace=False)
self.nl_2 = torch.nn.ReLU(inplace=False)
self.relu_in = relu_in
self.skip_in = skip_in
for i in range(depth-1):
if i < depth - 2:
c_in, c = in_channels, in_channels
else:
c_in, c = in_channels, out_channels
setattr(self, f"conv1{i}", torch.nn.Conv2d(c_in, c_in, kernel_size, padding=padding, bias=bias))
setattr(self, f"conv2{i}", torch.nn.Conv2d(c_in, c, kernel_size, padding=padding, bias=bias))
setattr(self, f"skipconv{i}", torch.nn.Conv2d(c_in, c, 1, bias=False))
def forward(self, x):
if self.skip_in and self.relu_in:
x = self.nl_1(self.convin(x)) + self.zero_conv_skip(x)
elif self.skip_in and not self.relu_in:
x = self.convin(x) + self.zero_conv_skip(x)
else:
x = self.convin(x)
for i in range(self.depth-1):
aux = getattr(self, f"conv1{i}")(x)
aux = self.nl_2(aux)
aux_0 = getattr(self, f"conv2{i}")(aux)
aux_1 = getattr(self, f"skipconv{i}")(x)
x = aux_0 + aux_1
return x
class SNRModule(torch.nn.Module):
"""
A method that only performs convolutional operations on the appropriate channels dim.
"""
def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64):
super(SNRModule, self).__init__()
self.channels_list = channels_list
self.residual = residual
for i, channels in enumerate(channels_list):
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels + 1, features, 3, bias=bias, padding=1))
setattr(self, f"nl{i}", torch.nn.ReLU())
setattr(self, f"conv{i}_2", torch.nn.Conv2d(features, out_channels, 3, bias=bias, padding=1))
def forward(self, x0, sigma):
i = self.channels_list.index(x0.shape[1])
noise_level_map = (torch.ones((x0.size(0), 1, x0.size(2), x0.size(3)), device=x0.device) * sigma)
x = torch.cat((x0, noise_level_map), 1)
u = getattr(self, f"conv{i}_1")(x)
u = getattr(self, f"nl{i}")(u)
u = getattr(self, f"conv{i}_2")(u)
den = u.pow(2).mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True).sqrt()
u = u.abs() / (den + 1e-8)
return u.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True)
class EquivConvModule(torch.nn.Module):
"""
A method that only performs convolutional operations on the appropriate channels dim.
"""
def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64, N=1):
super(EquivConvModule, self).__init__()
self.channels_list = [c * N for c in channels_list]
self.residual = residual
for i, channels in enumerate(channels_list):
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels * N, channels * N, 3, bias=bias, padding=1))
setattr(self, f"nl{i}", torch.nn.ReLU())
setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels * N, out_channels, 3, bias=bias, padding=1))
def forward(self, x):
i = self.channels_list.index(x.shape[1])
u = getattr(self, f"conv{i}_1")(x)
u = getattr(self, f"nl{i}")(u)
u = getattr(self, f"conv{i}_2")(u)
return u
class EquivHeads(torch.nn.Module):
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear"):
super(EquivHeads, self).__init__()
self.in_channels_list = in_channels_list
self.scale = scale
self.mode = mode
for i, in_channels in enumerate(in_channels_list):
setattr(self, f"head{i}", HeadBlock(in_channels + 1, out_channels, depth=depth, bias=bias))
if self.mode == "":
self.nl = torch.nn.ReLU(inplace=False)
if self.scale != 1:
for i, in_channels in enumerate(in_channels_list):
setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
def forward(self, x, sigma):
in_channels = x.size(1)
i = self.in_channels_list.index(in_channels)
if self.scale != 1:
if self.mode == "bilinear":
x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
else:
x = getattr(self, f"down{i}")(x)
x = self.nl(x)
# concat noise level map
noise_level_map = (torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device) * sigma)
x = torch.cat((x, noise_level_map), 1)
# find index
x = getattr(self, f"head{i}")(x)
return x
|