Spaces:
Sleeping
Sleeping
File size: 50,785 Bytes
12a4d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 |
# Code borrowed from Kai Zhang https://github.com/cszn/DPIR/tree/master/models
import re
import math
import functools
import deepinv as dinv
from deepinv.utils import plot, TensorList
import torch
from torch.func import vmap
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from deepinv.optim.utils import conjugate_gradient
from physics.multiscale import MultiScaleLinearPhysics, Pad
from models.blocks import EquivMaxPool, AffineConv2d, ConvNextBlock2, NoiseEmbedding, MPConv, TimestepEmbedding, conv, downsample_strideconv, upsample_convtranspose
from models.heads import Heads, Tails, InHead, OutTail, ConvChannels, SNRModule, EquivConvModule, EquivHeads
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
### --------------- MODEL ---------------
class BaseEncBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
bias=False,
mode="CRC",
nb=2,
embedding=False,
emb_channels=None,
emb_physics=False,
img_channels=None,
decode_upscale=None,
config='A',
N=4,
c_mult=1,
depth_encoding=1,
relu_in_encoding=False,
skip_in_encoding=True,
):
super(BaseEncBlock, self).__init__()
self.config = config
self.enc = nn.ModuleList(
[
ResBlock(
in_channels,
out_channels,
bias=bias,
mode=mode,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=img_channels,
decode_upscale=decode_upscale,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
for _ in range(nb)
]
)
def forward(self, x, emb_sigma=None, physics=None, t=None, y=None, emb_in=None, img_channels=None, scale=0):
for i in range(len(self.enc)):
x = self.enc[i](x, emb_sigma=emb_sigma, physics=physics, t=t, y=y, img_channels=img_channels, scale=scale)
return x
class NextEncBlock(nn.Module):
def __init__(
self, in_channels, out_channels, bias=False, mode="", mult_fact=4, nb=2
):
super(NextEncBlock, self).__init__()
self.enc = nn.ModuleList(
[
ConvNextBlock2(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
mode=mode,
mult_fact=mult_fact,
)
for _ in range(nb)
]
)
def forward(self, x, emb_sigma=None):
for i in range(len(self.enc)):
x = self.enc[i](x, emb_sigma)
return x
class UNeXt(nn.Module):
r"""
DRUNet denoiser network.
The network architecture is based on the paper
`Learning deep CNN denoiser prior for image restoration <https://arxiv.org/abs/1704.03264>`_,
and has a U-Net like structure, with convolutional blocks in the encoder and decoder parts.
The network takes into account the noise level of the input image, which is encoded as an additional input channel.
A pretrained network for (in_channels=out_channels=1 or in_channels=out_channels=3)
can be downloaded via setting ``pretrained='download'``.
:param int in_channels: number of channels of the input.
:param int out_channels: number of channels of the output.
:param list nc: number of convolutional layers.
:param int nb: number of convolutional blocks per layer.
:param int nf: number of channels per convolutional layer.
:param str act_mode: activation mode, "R" for ReLU, "L" for LeakyReLU "E" for ELU and "S" for Softplus.
:param str downsample_mode: Downsampling mode, "avgpool" for average pooling, "maxpool" for max pooling, and
"strideconv" for convolution with stride 2.
:param str upsample_mode: Upsampling mode, "convtranspose" for convolution transpose, "pixelsuffle" for pixel
shuffling, and "upconv" for nearest neighbour upsampling with additional convolution.
:param str, None pretrained: use a pretrained network. If ``pretrained=None``, the weights will be initialized at random
using Pytorch's default initialization. If ``pretrained='download'``, the weights will be downloaded from an
online repository (only available for the default architecture with 3 or 1 input/output channels).
Finally, ``pretrained`` can also be set as a path to the user's own pretrained weights.
See :ref:`pretrained-weights <pretrained-weights>` for more details.
:param bool train: training or testing mode.
:param str device: gpu or cpu.
"""
def __init__(
self,
in_channels=[1, 2, 3],
out_channels=[1, 2, 3],
nc=[64, 128, 256, 512],
nb=4, # 4 in DRUNet but out of memory
conv_type="next", # should be 'base' or 'next'
pool_type="next", # should be 'base' or 'next'
cond_type="base", # conditioning, should be 'base' or 'edm'
device=None,
bias=False,
mode="",
residual=False,
act_mode="R",
layer_scale_init_value=1e-6,
init_type="ortho",
gain_init_conv=1.0,
gain_init_linear=1.0,
drop_prob=0.0,
replk=False,
mult_fact=4,
antialias="gaussian",
emb_physics=False,
config='A',
pretrained_pth=None,
N=4,
c_mult=1,
depth_encoding=1,
relu_in_encoding=False,
skip_in_encoding=True,
):
super(UNeXt, self).__init__()
self.residual = residual
self.conv_type = conv_type
self.pool_type = pool_type
self.emb_physics = emb_physics
self.config = config
self.in_channels = in_channels
self.fact_realign = torch.nn.Parameter(torch.tensor([1.0], device=device))
self.separate_head = isinstance(in_channels, list)
assert cond_type in ["base", "edm"], "cond_type should be 'base' or 'edm'"
self.cond_type = cond_type
if self.cond_type == "base":
if self.config != 'E':
if isinstance(in_channels, list):
in_channels_first = []
for i in range(len(in_channels)):
in_channels_first.append(in_channels[i] + 2)
else: # old head
in_channels_first = in_channels + 1
else:
in_channels_first = in_channels
else:
in_channels_first = in_channels
self.noise_embedding = NoiseEmbedding(
num_channels=in_channels, emb_channels=max(nc), device=device
)
self.timestep_embedding = lambda x: x
# check if in_channels is a list
self.m_head = InHead(in_channels_first, nc[0])
if conv_type == "next":
self.m_down1 = NextEncBlock(
nc[0], nc[0], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_down2 = NextEncBlock(
nc[1], nc[1], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_down3 = NextEncBlock(
nc[2], nc[2], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_body = NextEncBlock(
nc[3], nc[3], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_up3 = NextEncBlock(
nc[2], nc[2], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_up2 = NextEncBlock(
nc[1], nc[1], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
self.m_up1 = NextEncBlock(
nc[0], nc[0], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
)
elif conv_type == "base":
embedding = (
False if cond_type == "base" else True
)
emb_channels = max(nc)
self.m_down1 = BaseEncBlock(
nc[0],
nc[0],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=1,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_down2 = BaseEncBlock(
nc[1],
nc[1],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=2,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_down3 = BaseEncBlock(
nc[2],
nc[2],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=4,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_body = BaseEncBlock(
nc[3],
nc[3],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=8,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_up3 = BaseEncBlock(
nc[2],
nc[2],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=4,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_up2 = BaseEncBlock(
nc[1],
nc[1],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=2,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
self.m_up1 = BaseEncBlock(
nc[0],
nc[0],
bias=False,
mode="CRC",
nb=nb,
embedding=embedding,
emb_channels=emb_channels,
emb_physics=emb_physics,
img_channels=in_channels,
decode_upscale=1,
config=config,
N=N,
c_mult=c_mult,
depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding,
skip_in_encoding=skip_in_encoding,
)
else:
raise NotImplementedError("conv_type should be 'base' or 'next'")
if pool_type == "next_max":
self.pool1 = EquivMaxPool(
antialias=antialias,
in_channels=nc[0],
out_channels=nc[1],
device=device,
)
self.pool2 = EquivMaxPool(
antialias=antialias,
in_channels=nc[1],
out_channels=nc[2],
device=device,
)
self.pool3 = EquivMaxPool(
antialias=antialias,
in_channels=nc[2],
out_channels=nc[3],
device=device,
)
elif pool_type == "base":
self.pool1 = downsample_strideconv(nc[0], nc[1], bias=False, mode="2")
self.pool2 = downsample_strideconv(nc[1], nc[2], bias=False, mode="2")
self.pool3 = downsample_strideconv(nc[2], nc[3], bias=False, mode="2")
self.up3 = upsample_convtranspose(nc[3], nc[2], bias=False, mode="2")
self.up2 = upsample_convtranspose(nc[2], nc[1], bias=False, mode="2")
self.up1 = upsample_convtranspose(nc[1], nc[0], bias=False, mode="2")
else:
raise NotImplementedError("pool_type should be 'base' or 'next'")
self.m_tail = OutTail(nc[0], in_channels)
if conv_type == "base":
init_func = functools.partial(
weights_init_unext, init_type="ortho", gain_conv=0.2
)
self.apply(init_func)
else:
init_func = functools.partial(
weights_init_unext,
init_type=init_type,
gain_conv=gain_init_conv,
gain_linear=gain_init_linear,
)
self.apply(init_func)
if pretrained_pth=='jz':
pth = '/lustre/fswork/projects/rech/nyd/commun/mterris/base_checkpoints/drunet_deepinv_color_finetune_22k.pth'
self.load_drunet_weights(pth)
elif pretrained_pth is not None:
self.load_drunet_weights(pretrained_pth)
if self.config == 'D':
# deactivate grad for layers that do not contain the string "PhysicsBlock" or "gain" or "fact_realign"
for name, param in self.named_parameters():
if 'PhysicsBlock' not in name and 'gain' not in name and 'fact_realign' not in name and "m_head" not in name and "m_tail" not in name:
param.requires_grad = False
if device is not None:
self.to(device)
def load_drunet_weights(self, ckpt_pth):
state_dict = torch.load(ckpt_pth, map_location=lambda storage, loc: storage)
new_state_dict = {}
matched_keys = [] # List to store successfully matched keys
unmatched_keys = [] # List to store keys that were not matched or excluded
excluded_keys = [] # List to store excluded keys
# Define patterns to exclude
exclude_patterns = ["head", "tail"]
# Dealing with regular keys
for old_key, value in state_dict.items():
# Skip keys containing any of the excluded patterns
if any(excluded in old_key for excluded in exclude_patterns):
excluded_keys.append(old_key)
continue # Skip further processing for this key
new_key = old2new(old_key)
if new_key is not None:
matched_keys.append((old_key, new_key)) # Record the matched keys
new_state_dict[new_key] = value
else:
unmatched_keys.append(old_key) # Record unmatched keys
# TODO: clean this
for excluded_key in excluded_keys:
if isinstance(self.in_channels, list):
for i, in_channel in enumerate(self.in_channels):
# print('Dealing with conv ', i)
new_key = f"m_head.conv{i}.weight"
if 'head' in excluded_key:
new_key = f"m_head.conv{i}.weight"
# new_key = f"m_head.head.conv{i}.weight"
if 'tail' in excluded_key:
new_key = f"m_tail.conv{i}.weight"
# DEBUG print all keys of state dict:
# print(state_dict.keys())
# print(self.state_dict().keys())
conditioning = 'base'
# if self.config == 'E':
# conditioning = False
new_kv = update_keyvals_headtail(excluded_key,
state_dict[excluded_key],
init_value=self.state_dict()[new_key],
new_key_name=new_key,
conditioning=conditioning)
new_state_dict.update(new_kv)
# print(new_kv.keys())
else:
new_kv = update_keyvals_headtail(excluded_key, state_dict[excluded_key])
new_state_dict.update(new_kv)
# Display matched keys
print("Matched keys:")
for old_key, new_key in matched_keys:
print(f"{old_key} -> {new_key}")
# Load updated state dict into the model
self.load_state_dict(new_state_dict, strict=False)
# Display unmatched keys
print("\nUnmatched keys:")
for unmatched_key in unmatched_keys:
print(unmatched_key)
print("Weights loaded from ", ckpt_pth)
def constant2map(self, value, x):
if isinstance(value, torch.Tensor):
if value.ndim > 0:
value_map = value.view(x.size(0), 1, 1, 1)
value_map = value_map.expand(-1, 1, x.size(2), x.size(3))
else:
value_map = torch.ones(
(x.size(0), 1, x.size(2), x.size(3)), device=x.device
) * value[None, None, None, None].to(x.device)
else:
value_map = (
torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device)
* value
)
return value_map
def base_conditioning(self, x, sigma, gamma):
noise_level_map = self.constant2map(sigma, x)
gamma_map = self.constant2map(gamma, x)
return torch.cat((x, noise_level_map, gamma_map), 1)
def realign_input(self, x, physics, y):
if hasattr(physics, "factor"):
f = physics.factor
elif hasattr(physics, "base") and hasattr(physics.base, "factor"):
f = physics.base.factor
elif hasattr(physics, "base") and hasattr(physics.base, "base") and hasattr(physics.base.base, "factor"):
f = physics.base.base.factor
else:
f = 1.0
sigma = 1e-6 # default value
if hasattr(physics.noise_model, 'sigma'):
sigma = physics.noise_model.sigma
if hasattr(physics, 'base') and hasattr(physics.base, 'noise_model') and hasattr(physics.base.noise_model, 'sigma'):
sigma = physics.base.noise_model.sigma
if hasattr(physics, 'base') and hasattr(physics.base, 'base') and hasattr(physics.base.base, 'noise_model') and hasattr(physics.base.base.noise_model, 'sigma'):
sigma = physics.base.base.noise_model.sigma
if isinstance(y, TensorList):
num = (y[0].reshape(y[0].shape[0], -1).abs().mean(1))
else:
num = (y.reshape(y.shape[0], -1).abs().mean(1))
snr = num / (sigma + 1e-4) # SNR equivariant
gamma = 1 / (1e-4 + 1 / (snr * f **2 )) # TODO: check square-root / mean / check if we need to add a factor in front ?
gamma = gamma[(...,) + (None,) * (x.dim() - 1)]
model_input = physics.prox_l2(x, y, gamma=gamma * self.fact_realign)
return model_input
def forward_unet(self, x0, sigma=None, gamma=None, physics=None, t=None, y=None, img_channels=None):
# list_values = []
if self.cond_type == "base":
# if self.config != 'E':
x0 = self.base_conditioning(x0, sigma, gamma)
emb_sigma = None
else:
emb_sigma = self.noise_embedding(
sigma
) # This only if the embedding is the non-basic one from drunet
emb_timestep = self.timestep_embedding(t)
x1 = self.m_head(x0) # old
# x1 = self.m_head(x0, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
# list_values.append(x1.abs().mean())
if self.config == 'G':
x1_, emb1_ = self.m_down1(x1, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
else:
x1_ = self.m_down1(x1, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=0)
x2 = self.pool1(x1_)
# list_values.append(x2.abs().mean())
if self.config == 'G':
x3_, emb3_ = self.m_down2(x2, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
else:
x3_ = self.m_down2(x2, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=1)
x3 = self.pool2(x3_)
# list_values.append(x3.abs().mean())
if self.config == 'G':
x4_, emb4_ = self.m_down3(x3, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
else:
x4_ = self.m_down3(x3, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=2)
x4 = self.pool3(x4_)
# issue: https://github.com/matthieutrs/ram_project/issues/1
# solution 1: using .contiguous() below
# solution 2: using a print statement that magically solves the issue
###print(x4.is_contiguous())
# list_values.append(x4.abs().mean())
if self.config == 'G':
x, _ = self.m_body(x4, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
else:
x = self.m_body(x4, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=3)
# list_values.append(x.abs().mean())
if self.pool_type == "next" or self.pool_type == "next_max":
x = self.pool3.upscale(x + x4)
else:
x = self.up3(x + x4)
if self.config == 'G':
x, _ = self.m_up3(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb4_, img_channels=img_channels)
else:
x = self.m_up3(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=2)
# list_values.append(x.abs().mean())
if self.pool_type == "next" or self.pool_type == "next_max":
x = self.pool2.upscale(x + x3)
else:
x = self.up2(x + x3)
if self.config == 'G':
x, _ = self.m_up2(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb3_, img_channels=img_channels)
else:
x = self.m_up2(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=1)
# list_values.append(x.abs().mean())
if self.pool_type == "next" or self.pool_type == "next_max":
x = self.pool1.upscale(x + x2)
else:
x = self.up1(x + x2)
if self.config == 'G':
x, _ = self.m_up1(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb1_, img_channels=img_channels)
else:
x = self.m_up1(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=0)
# list_values.append(x.abs().mean())
if self.separate_head:
x = self.m_tail(x + x1, img_channels)
else:
x = self.m_tail(x + x1)
return x
def forward(self, x, sigma=None, gamma=None, physics=None, t=None, y=None):
r"""
Run the denoiser on image with noise level :math:`\sigma`.
:param torch.Tensor x: noisy image
:param float, torch.Tensor sigma: noise level. If ``sigma`` is a float, it is used for all images in the batch.
If ``sigma`` is a tensor, it must be of shape ``(batch_size,)``.
"""
img_channels = x.shape[1] # x_n_chan = x.shape[1]
if self.emb_physics:
physics = MultiScaleLinearPhysics(physics, x.shape[-3:], device=x.device)
if self.separate_head and img_channels not in self.in_channels:
raise ValueError(f"Input image has {img_channels} channels, but the network only have heads for {self.in_channels} channels.")
if y is not None:
x = self.realign_input(x, physics, y)
x = self.forward_unet(x, sigma=sigma, gamma=gamma, physics=physics, t=t, y=y, img_channels=img_channels)
return x
def krylov_embeddings_old(y, p, factor, v=None, N=4, feat_size=1, x_init=None, img_channels=3):
if x_init is None:
x = p.A_adjoint(y)
else:
x = x_init[:, :img_channels, ...]
if feat_size > 1:
_, C, _, _ = x.shape
if v is None:
v = torch.zeros_like(x).repeat(1, N-1, 1, 1)
out = x - v[:, :C, ...]
norm = factor ** 2
A = lambda u: p.A_adjoint(p.A(u)) * norm
for i in range(N-1):
x = A(x) - v[:, (i+1) * C:(i+2) * C, ...]
out = torch.cat([out, x], dim=1)
else:
if v is None:
v = torch.zeros_like(x)
out = x - v
norm = factor ** 2
A = lambda u: p.A_adjoint(p.A(u)) * norm
for i in range(N-1):
x = A(x) - v
out = torch.cat([out, x], dim=1)
return out
def krylov_embeddings(y, p, factor, v=None, N=4, x_init=None, img_channels=3):
"""
Efficient Krylov subspace embedding computation with parallel processing.
Args:
y (torch.Tensor): The input tensor.
p: An object with A and A_adjoint methods (linear operator).
factor (float): Scaling factor.
v (torch.Tensor, optional): Precomputed values to subtract from Krylov sequence. Defaults to None.
N (int, optional): Number of Krylov iterations. Defaults to 4.
feat_size (int, optional): Feature expansion size. Defaults to 1.
x_init (torch.Tensor, optional): Initial guess. Defaults to None.
img_channels (int, optional): Number of image channels. Defaults to 3.
Returns:
torch.Tensor: The Krylov embeddings.
"""
if x_init is None:
x = p.A_adjoint(y)
else:
x = x_init.clone() # Extract the first img_channels
norm = factor ** 2 # Precompute normalization factor
AtA = lambda u: p.A_adjoint(p.A(u)) * norm # Define the linear operator
v = v if v is not None else torch.zeros_like(x)
out = x.clone()
# Compute Krylov basis
x_k = x.clone()
for i in range(N-1):
x_k = AtA(x_k) - v
out = torch.cat([out, x_k], dim=1)
return out
def grad_embeddings(y, p, factor, v=None, N=4, feat_size=1):
Aty = p.A_adjoint(y)
if feat_size > 1:
_, C, _, _ = Aty.shape
if v is None:
v = torch.zeros_like(Aty).repeat(1, N-1, 1, 1)
out = v[:, :C, ...] - Aty
norm = factor ** 2
A = lambda u: p.A_adjoint(p.A(u)) * norm
for i in range(N-1):
x = A(v[:, (i+1) * C:(i+2) * C, ...]) - Aty
out = torch.cat([out, x], dim=1)
else:
if v is None:
v = torch.zeros_like(Aty)
out = v - Aty
norm = factor ** 2
A = lambda u: p.A_adjoint(p.A(u)) * norm
for i in range(N-1):
x = A(v) - Aty
out = torch.cat([out, x], dim=1)
return out
def prox_embeddings(y, p, factor, v=None, N=4):
x = p.A_adjoint(y)
B, C, H, W = x.shape
if v is None:
v = torch.zeros_like(x)
v = v.repeat(1, N - 1, 1, 1)
gamma = torch.logspace(-4, -1, N-1, device=x.device).repeat_interleave(C).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
norm = factor ** 2
A_sub = lambda u: torch.cat([p.A_adjoint(p.A(u[:, i * C:(i+1) * C, ...])) * norm for i in range(N-1)], dim=1)
A = lambda u: A_sub(u) + (u - v) * gamma
u_hat = conjugate_gradient(A, x.repeat(1, N-1, 1, 1), max_iter=3, tol=1e-3)
u_hat = torch.cat([u_hat, x], dim=1)
return u_hat
# --------------------------------------------
# Res Block: x + conv(relu(conv(x)))
# --------------------------------------------
class MeasCondBlock(nn.Module):
def __init__(
self,
out_channels=64,
img_channels=None,
decode_upscale=None,
config = 'A',
N=4,
depth_encoding=1,
relu_in_encoding=False,
skip_in_encoding=True,
c_mult=1,
):
super(MeasCondBlock, self).__init__()
self.separate_head = isinstance(img_channels, list)
self.config = config
assert img_channels is not None, "decode_dimensions should be provided"
assert decode_upscale is not None, "decode_upscale should be provided"
# if self.separate_head:
if self.config == 'A':
self.relu_encoding = nn.ReLU(inplace=False)
self.N = N
self.c_mult = c_mult
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
if self.config == 'B':
self.N = N
self.c_mult = c_mult
self.relu_encoding = nn.ReLU(inplace=False)
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
if self.config == 'C':
self.N = N
self.c_mult = c_mult
self.relu_encoding = nn.ReLU(inplace=False)
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult*N, c_add=N, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
elif self.config == 'D':
self.N = N
self.c_mult = c_mult
self.relu_encoding = nn.ReLU(inplace=False)
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult*N, c_add=N, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
self.gain_gradx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_grady = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_pinvx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
self.gain_pinvy = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
def forward(self, x, y, physics, t, emb_in=None, img_channels=None, scale=1):
if self.config == 'A':
return self.measurement_conditioning_config_A(x, y, physics, img_channels=img_channels, scale=scale)
elif self.config == 'F':
return self.measurement_conditioning_config_F(x, y, physics, img_channels=img_channels, scale=scale)
elif self.config == 'B':
return self.measurement_conditioning_config_B(x, y, physics, img_channels=img_channels, scale=scale)
elif self.config == 'C':
return self.measurement_conditioning_config_C(x, y, physics, img_channels=img_channels, scale=scale)
elif self.config == 'D':
return self.measurement_conditioning_config_D(x, y, physics, img_channels=img_channels, scale=scale)
elif self.config == 'E':
return self.measurement_conditioning_config_E(x, y, physics, img_channels=img_channels, scale=scale)
else:
raise NotImplementedError('Config not implemented')
def measurement_conditioning_config_A(self, x, y, physics, img_channels, scale=0):
physics.set_scale(scale)
factor = 2**(scale)
meas = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
cond = self.encoding_conv(meas)
emb = self.relu_encoding(cond)
return emb
def measurement_conditioning_config_B(self, x, y, physics, img_channels, scale=0):
physics.set_scale(scale)
dec = self.decoding_conv(x, img_channels)
factor = 2**(scale)
meas = krylov_embeddings(y, physics, factor, v=dec, N=self.N, img_channels=img_channels)
cond = self.encoding_conv(meas)
emb = self.relu_encoding(cond)
return emb # * sigma_emb
def measurement_conditioning_config_C(self, x, y, physics, img_channels, scale=0):
physics.set_scale(scale)
dec = self.decoding_conv(x, img_channels)
factor = 2**(scale)
meas_y = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...], img_channels=img_channels)
for c in range(1, self.c_mult):
meas_cur = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, img_channels*c:img_channels*(c+1)],
img_channels=img_channels)
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
meas = torch.cat([meas_y, meas_dec], dim=1)
cond = self.encoding_conv(meas)
emb = self.relu_encoding(cond)
return emb
def measurement_conditioning_config_D(self, x, y, physics, img_channels, scale=0):
physics.set_scale(scale)
dec = self.decoding_conv(x, img_channels)
factor = 2**(scale)
meas_y = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...], img_channels=img_channels)
for c in range(1, self.c_mult):
meas_cur = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, img_channels*c:img_channels*(c+1)],
img_channels=img_channels)
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
meas = torch.cat([meas_y, meas_dec], dim=1)
cond = self.encoding_conv(meas)
emb = self.relu_encoding(cond)
return cond
def measurement_conditioning_config_F(self, x, y, physics, img_channels):
dec_large = self.decoding_conv(x, img_channels) # go from shape = (B, C, H, W) to (B, 64, 64, 64) (independent of modality)
dec = self.relu_decoding(dec_large)
Adec = physics.A(dec)
grad = physics.A_adjoint(self.gain_gradx ** 2 * Adec - self.gain_grady ** 2 * y) # TODO: check if we need to have L2 (depending on noise nature, can be automated)
if 'tomography' in physics.__class__.__name__.lower(): # or 'pansharp' in physics.__class__.__name__.lower():
pinv = physics.prox_l2(dec, self.gain_pinvx ** 2 * Adec - self.gain_pinvy ** 2 * y, gamma=1e9)
else:
pinv = physics.A_dagger(self.gain_pinvx ** 2 * Adec - self.gain_pinvy ** 2 * y) # TODO: do we set this to gain_gradx ? To get 0 during training too?? Better for denoising I guess
# Mix grad and pinv
emb = grad - pinv # will be 0 in the case of denoising, but also inpainting
im_emb = dec - physics.A_adjoint_A(dec) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
grad_large = emb + im_emb
emb_grad = self.encoding_conv(grad_large)
emb_grad = self.relu_encoding(emb_grad)
return emb_grad
def measurement_conditioning_config_E(self, x, y, physics, img_channels, scale=1):
dec = self.decoding_conv(x, img_channels) # go from shape = (B, C, H, W) to (B, 64, 64, 64) (independent of modality)
physics.set_scale(scale)
# TODO: check things are batched
f = physics.factor if hasattr(physics, "factor") else 1.0
err = (physics.A_adjoint(physics.A(dec) - y))
# snr = self.snr_module(err)
snr = dec.reshape(dec.shape[0], -1).abs().mean(dim=1) / (err.reshape(err.shape[0], -1).abs().mean(dim=1) + 1e-4)
gamma = 1 / (1e-4 + 1 / (snr * f ** 2 + 1)) # TODO: check square-root / mean / check if we need to add a factor in front
gamma_est = gamma[(...,) + (None,) * (dec.dim() - 1)]
prox = physics.prox_l2(dec, y, gamma=gamma_est * self.fact_prox)
emb = self.fact_prox_skip_1 * prox + self.fact_prox_skip_2 * dec
emb_grad = self.encoding_conv(emb)
emb_grad = self.relu_encoding(emb_grad)
return emb_grad
class ResBlock(nn.Module):
def __init__(
self,
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=True,
mode="CRC",
negative_slope=0.2,
embedding=False,
emb_channels=None,
emb_physics=False,
img_channels=None,
decode_upscale=None,
config = 'A',
head=False,
tail=False,
N=4,
c_mult=1,
depth_encoding=1,
relu_in_encoding=False,
skip_in_encoding=True,
):
super(ResBlock, self).__init__()
if not head and not tail:
assert in_channels == out_channels, "Only support in_channels==out_channels."
self.separate_head = isinstance(img_channels, list)
self.config = config
self.is_head = head
self.is_tail = tail
if self.is_head:
self.head = InHead(img_channels, out_channels, input_layer=True)
# if self.is_tail:
# self.tail = OutTail(in_channels, out_channels)
if not self.is_head and not self.is_tail:
self.conv1 = conv(
in_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
"C",
negative_slope,
)
self.nl = nn.ReLU(inplace=True)
self.conv2 = conv(
out_channels,
out_channels,
kernel_size,
stride,
padding,
bias,
"C",
negative_slope,
)
if embedding:
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
self.emb_linear = MPConv(emb_channels, out_channels, kernel=[])
self.emb_physics = emb_physics
if self.emb_physics:
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
self.PhysicsBlock = MeasCondBlock(out_channels=out_channels, config=config, c_mult=c_mult,
img_channels=img_channels, decode_upscale=decode_upscale,
N=N, depth_encoding=depth_encoding,
relu_in_encoding=relu_in_encoding, skip_in_encoding=skip_in_encoding)
def forward(self, x, emb_sigma=None, physics=None, t=None, y=None, emb_in=None, img_channels=None, scale=0):
u = self.conv1(x)
u = self.nl(u)
u_2 = self.conv2(u) # Should we sum this with below?
if self.emb_physics: # TODO: add a factor (1+gain) to the emb_meas? that depends on the input snr
emb_grad = self.PhysicsBlock(u, y, physics, t, img_channels=img_channels, scale=scale)
u_1 = self.gain * emb_grad # x - grad (sign does not matter)
else:
u_1 = 0
return x + u_2 + u_1
def calculate_fan_in_and_fan_out(tensor, pytorch_style: bool = True):
"""
from https://github.com/megvii-research/basecls/blob/main/basecls/layers/wrapper.py#L77
"""
if len(tensor.shape) not in (2, 4, 5):
raise ValueError(
"fan_in and fan_out can only be computed for tensor with 2/4/5 "
"dimensions"
)
if len(tensor.shape) == 5:
# `GOIKK` to `OIKK`
tensor = tensor.reshape(-1, *tensor.shape[2:]) if pytorch_style else tensor[0]
num_input_fmaps = tensor.shape[1]
num_output_fmaps = tensor.shape[0]
receptive_field_size = 1
if len(tensor.shape) > 2:
receptive_field_size = functools.reduce(lambda x, y: x * y, tensor.shape[2:], 1)
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def weights_init_unext(m, gain_conv=1.0, gain_linear=1.0, init_type="ortho"):
if hasattr(m, "modules"):
for submodule in m.modules():
if not 'skip' in str(submodule):
if isinstance(submodule, nn.Conv2d) or isinstance(
submodule, nn.ConvTranspose2d
):
# nn.init.orthogonal_(submodule.weight.data, gain=1.0)
k_shape = submodule.weight.data.shape[-1]
if k_shape < 4:
nn.init.orthogonal_(submodule.weight.data, gain=0.2)
else:
_, fan_out = calculate_fan_in_and_fan_out(submodule.weight)
std = math.sqrt(2 / fan_out)
nn.init.normal_(submodule.weight, 0, std)
# if init_type == 'ortho':
# nn.init.orthogonal_(submodule.weight.data, gain=gain_conv)
# elif init_type == 'kaiming':
# nn.init.kaiming_normal_(submodule.weight.data, a=0, mode='fan_in')
# elif init_type == 'xavier':
# nn.init.xavier_normal_(submodule.weight.data, gain=gain_conv)
elif isinstance(submodule, nn.Linear):
nn.init.normal_(submodule.weight.data, std=0.01)
elif 'skip' in str(submodule):
if isinstance(submodule, nn.Conv2d) or isinstance(
submodule, nn.ConvTranspose2d
):
nn.init.ones_(submodule.weight.data)
# else:
# classname = submodule.__class__.__name__
# # print('WARNING: no init for ', classname)
def old2new(old_key):
"""
Converting old DRUNet keys to new UNExt style keys.
PATTERNS TO MATCH:
1. Case of downsampling blocks:
- for residual blocks (non-downsampling):
m_down3.2.res.0.weight -> m_down3.enc.2.conv1.weight
- for downsampling blocks:
m_down3.4.weight -> m_down3.downsample_strideconv.weight
2. Case of upsampling blocks:
- for upsampling:
m_up3.0.weight -> m_up3.upsample_convtranspose.weight
- for residual blocks:
m_up3.2.res.0.weight -> m_up3.enc.2.conv1.weight
3. Case for body blocks:
m_body.0.res.2.weight -> m_body.enc.0.conv2.weight
Args:
old_key (str): The old key from the state dictionary.
Returns:
str or None: The new key if matched, otherwise None.
"""
# Match keys with the pattern for residual blocks (downsampling)
match_residual = re.search(r"(m_down\d+)\.(\d+)\.res\.(\d+)", old_key)
if match_residual:
prefix = match_residual.group(1) # e.g., "m_down2"
index = match_residual.group(2) # e.g., "3"
conv_index = int(match_residual.group(3)) # e.g., "0"
# Determine the new conv index: 0 -> 1, 2 -> 2
new_conv_index = 1 if conv_index == 0 else 2
# Construct the new key
new_key = f"{prefix}.enc.{index}.conv{new_conv_index}.weight"
return new_key
match_residual = re.search(r"(m_up\d+)\.(\d+)\.res\.(\d+)", old_key)
if match_residual:
prefix = match_residual.group(1) # e.g., "m_down2"
index = int(match_residual.group(2)) # e.g., "3"
conv_index = int(match_residual.group(3)) # e.g., "0"
# Determine the new conv index: 0 -> 1, 2 -> 2
new_conv_index = 1 if conv_index == 0 else 2
# Construct the new key
new_key = f"{prefix}.enc.{index-1}.conv{new_conv_index}.weight"
return new_key
match_pool_downsample = re.search(r"m_down(\d+)\.4\.weight", old_key)
if match_pool_downsample:
index = match_pool_downsample.group(1) # e.g., "1" or "2"
# Construct the new key
new_key = f"pool{index}.weight"
return new_key
# Match keys for upsampling blocks
match_upsample = re.search(r"m_up(\d+)\.0\.weight", old_key)
if match_upsample:
index = match_upsample.group(1) # e.g., "1" or "2"
# Construct the new key
new_key = f"up{index}.weight"
return new_key
# Match keys for body blocks
match_body = re.search(r"(m_body)\.(\d+)\.res\.(\d+)\.weight", old_key)
if match_body:
prefix = match_body.group(1) # e.g., "m_body"
index = match_body.group(2) # e.g., "0"
conv_index = int(match_body.group(3)) # e.g., "2"
new_convindex = 1 if conv_index == 0 else 2
# Construct the new key
new_key = f"{prefix}.enc.{index}.conv{new_convindex}.weight"
return new_key
# If no patterns match, return None
return None
def update_keyvals_headtail(old_key, old_value, init_value=None, new_key_name='m_head.conv0.weight', conditioning='base'):
"""
Converting old DRUNet keys to new UNExt style keys.
KEYS do not change but weight need to be 0 padded.
Args:
old_key (str): The old key from the state dictionary.
"""
if 'head' in old_key:
if conditioning == 'base':
c_in = init_value.shape[1]
c_in_old = old_value.shape[1]
# if c_in == c_in_old:
# new_value = old_value.detach()
# elif c_in < c_in_old:
# new_value = torch.zeros_like(init_value.detach())
# new_value[:, -1:, ...] = old_value[:, -1:, ...]
# new_value[:, :c_in-1, ...] = old_value[:, :c_in-1, ...]
# if c_in == c_in_old:
# new_value = old_value.detach()
# elif c_in < c_in_old:
new_value = torch.zeros_like(init_value.detach())
new_value[:, -2:-1, ...] = old_value[:, -1:, ...]
new_value[:, -1:, ...] = old_value[:, -1:, ...]
new_value[:, :c_in-2, ...] = old_value[:, :c_in-2, ...]
return {new_key_name: new_value}
else:
c_in = init_value.shape[1]
c_in_old = old_value.shape[1]
# if c_in == c_in_old - 1:
# new_value = old_value[:, :-1, ...].detach()
# elif c_in < c_in_old - 1:
# new_value = torch.zeros_like(init_value.detach())
# new_value[:, -1:, ...] = old_value[:, -1:, ...]
# new_value[:, ...] = old_value[:, :c_in, ...]
new_value = torch.zeros_like(init_value.detach())
new_value[:, -1:-2, ...] = old_value[:, -1:, ...]
new_value[:, -1:, ...] = old_value[:, -1:, ...]
new_value[:, ...] = old_value[:, :c_in, ...]
return {new_key_name: new_value}
elif 'tail' in old_key:
c_in = init_value.shape[0]
c_in_old = old_value.shape[0]
new_value = torch.zeros_like(init_value.detach())
if c_in == c_in_old:
new_value = old_value.detach()
elif c_in < c_in_old:
new_value = torch.zeros_like(init_value.detach())
new_value[:, ...] = old_value[:c_in, ...]
return {new_key_name: new_value}
else:
print(f"Key {old_key} does not contain 'head' or 'tail'.")
# test the network
if __name__ == "__main__":
net = UNeXt()
x = torch.randn(1, 3, 128, 128)
y = net(x, 0.1)
# print(y.shape)
# print(y)
# Case for diagonal physics
# IDEA 1: kills signal in the image of A
# im_emb = dec - physics.A_adjoint_A(dec) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
# IDEA 2: compute norm of signal in ker of A
# normker = (dec - physics.A_adjoint_A(dec)).norm() / (dec.norm() + 1e-4)
# im_emb = normker * physics.A_adjoint(self.gain_diag_x * physics.A(dec) - self.gain_diag_y * y) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
# IDEA 3: same as above but add the pinv as well
# normker = (dec - physics.A_adjoint_A(dec)).norm() / (dec.norm() + 1e-4)
# grad_term = physics.A_adjoint(self.gain_diag_x * physics.A(dec) - self.gain_diag_y * y)
# # pinv_term = physics.A_dagger(self.gain_diagpinv_x * physics.A(dec) - self.gain_diagpinv_y * y)
# if 'tomography' in physics.__class__.__name__.lower(): # or 'pansharp' in physics.__class__.__name__.lower():
# pinv_term = physics.prox_l2(dec, self.gain_diagpinv_x ** 2 * Adec - self.gain_diagpinv_y ** 2 * y, gamma=1e9)
# else:
# pinv_term = physics.A_dagger(self.gain_diagpinv_x ** 2 * Adec - self.gain_diagpinv_y ** 2 * y) # TODO: do we set this to gain_gradx ? To get 0 during training too?? Better for denoising I guess
# im_emb = normker * (grad_term + pinv_term) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
# # Mix it
# if hasattr(physics.noise_model, 'sigma'):
# sigma = physics.noise_model.sigma # SNR ? x /= sigma ** 2
# snr = (y.abs().mean()) / (sigma + 1e-4) # SNR equivariant # TODO: add epsilon
# snr = snr[(...,) + (None,) * (im_emb.dim() - 1)]
# else:
# snr = 1e4
#
# grad_large = emb + self.gain_diag * (1 + self.gain_noise / snr) * im_emb |