denoising / app.py
msong97's picture
unfinished work
4e7aed4
raw
history blame
13.5 kB
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
DEVICE_STR = 'cuda'
### Gradio Utils
def generate_imgs(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (3, 256, 256)
x = x.unsqueeze(0) # shape : (1, 3, 256, 256)
with torch.no_grad():
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat
out = model(y=y, physics=physics.physics)
out_baseline = baseline(y=y, physics=physics.physics)
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI" or "SR" in physics.name:
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
def update_random_idx_and_generate_imgs(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs(dataset,
idx,
model,
baseline,
physics,
use_gen,
metrics)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def save_imgs(dataset: EvalDataset, idx: int, physics: PhysicsWithGenerator,
model_a: EvalModel | BaselineModel, model_b: EvalModel | BaselineModel,
x: Image.Image, y: Image.Image,
out_a: Image.Image, out_b: Image.Image,
y_metrics_str: str,
out_a_metric_str : str, out_b_metric_str: str) -> None:
### PROCESSES STR
physics_params_str = ""
for param_name, param_value in physics.saved_params["updatable_params"].items():
physics_params_str += f"{param_name}_{param_value}-"
physics_params_str = physics_params_str[:-1] if physics_params_str.endswith("-") else physics_params_str
y_metrics_str = y_metrics_str.replace(" = ", "_").replace("\n", "-")
y_metrics_str = y_metrics_str[:-1] if y_metrics_str.endswith("-") else y_metrics_str
out_a_metric_str = out_a_metric_str.replace(" = ", "_").replace("\n", "-")
out_a_metric_str = out_a_metric_str[:-1] if out_a_metric_str.endswith("-") else out_a_metric_str
out_b_metric_str = out_b_metric_str.replace(" = ", "_").replace("\n", "-")
out_b_metric_str = out_b_metric_str[:-1] if out_b_metric_str.endswith("-") else out_b_metric_str
save_path = SAVE_IMG_DIR / f"{dataset.name}+{idx}+{physics.name}+{physics_params_str}+{y_metrics_str}+{model_a.name}+{out_a_metric_str}+{model_b.name}+{out_b_metric_str}.png"
titles = [f"{dataset.name}[{idx}]",
f"y = {physics.name}(x)",
f"{model_a.name}",
f"{model_b.name}"]
# Pil object -> torch.Tensor
to_tensor = transforms.ToTensor()
x = to_tensor(x)
y = to_tensor(y)
out_a = to_tensor(out_a)
out_b = to_tensor(out_b)
dinv.utils.plot([x, y, out_a, out_b], titles=titles, show=False, save_fn=save_path)
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
def get_physics(physics_name):
if physics_name == 'MRI':
baseline = get_baseline_model_on_DEVICE_STR('DPIR_MRI')
elif physics_name == 'CT':
baseline = get_baseline_model_on_DEVICE_STR('DPIR_CT')
else:
baseline = get_baseline_model_on_DEVICE_STR('DPIR')
return get_physics_on_DEVICE_STR(physics_name), baseline
def get_model(model_name, ckpt_pth):
if model_name in BaselineModel.all_baselines:
return get_baseline_model_on_DEVICE_STR(model_name)
else:
return get_eval_model_on_DEVICE_STR(model_name, ckpt_pth)
AVAILABLE_PHYSICS = PhysicsWithGenerator.all_physics
def get_dataset(dataset_name):
global AVAILABLE_PHYSICS
if dataset_name = 'MRI':
AVAILABLE_PHYSICS = ['MRI']
elif dataset_name = 'CT':
AVAILABLE_PHYSICS = ['CT']
else:
AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard', 'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
return get_dataset_on_DEVICE_STR(dataset_name)
### Gradio Blocks interface
# Define custom CSS
custom_css = """
.fixed-textbox textarea {
height: 90px !important; /* Adjust height to fit exactly 4 lines */
overflow: scroll; /* Add a scroll bar if necessary */
resize: none; /* User can resize vertically the textbox */
}
"""
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
gr.Markdown("## " + title)
# Loading things
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", "")) # lambda expression to instanciate a callable in a gr.State
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR")) # lambda expression to instanciate a callable in a gr.State
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy")) # lambda expression to instanciate a callable in a gr.State
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
@gr.render(inputs=[dataset_placeholder, physics_placeholder, metrics_placeholder])
def dynamic_layout(dataset, physics, metrics):
### LAYOUT
dataset_name = dataset.name
physics_name = physics.name
metric_names = [metric.name for metric in metrics]
# Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=False)
physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
with gr.Column():
y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],)
choose_physics = gr.Radio(choices=PhysicsWithGenerator.all_physics,
label="List of PhysicsWithGenerator",
value=physics_name)
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key",
scale=2)
value_text = gr.Textbox(label="Update Value", scale=2)
update_button = gr.Button("Manually update parameter value", scale=1)
with gr.Column():
with gr.Row():
with gr.Column():
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
out_a_metric = gr.Textbox(label="Metrics(RAM(y, physics), x)", elem_classes=["fixed-textbox"])
with gr.Column():
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
out_b_metric = gr.Textbox(label="Metrics(DPIR(y, physics), x)", elem_classes=["fixed-textbox"])
with gr.Row():
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="List of EvalDataset",
value=dataset_name,
scale=2)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1)
# Components: Load Metric + Load image Buttons
with gr.Row():
with gr.Column(scale=2):
choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics,
value=metric_names,
label="Choose metrics you are interested")
use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
with gr.Column(scale=1):
load_button = gr.Button("Load images...")
load_random_button = gr.Button("Load randomly...")
### Event listeners
choose_dataset.change(fn=get_dataset_on_DEVICE_STR,
inputs=choose_dataset,
outputs=dataset_placeholder)
choose_physics.change(fn=get_physics,
inputs=choose_physics,
outputs=[physics_placeholder, model_b_placeholder])
update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params)
choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
inputs=choose_metrics,
outputs=metrics_placeholder)
load_button.click(fn=generate_imgs,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=update_random_idx_and_generate_imgs,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
interface.launch()