denoising / app.py
mterris's picture
merge
e0ec252
raw
history blame
12 kB
import json
import os
import random
import time
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
### Config
DEVICE_STR = 'cuda' if torch.cuda.is_available() else 'cpu' # run model inference on NVIDIA gpu
torch.set_grad_enabled(False) # stops tracking values for gradients
### Gradio Utils
def generate_imgs_from_user(image,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor
x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (C, H, W)
x = x.unsqueeze(0) # shape : (1, C, H, W)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_random_imgs_from_dataset(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, model, baseline, physics, use_gen, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def generate_imgs(x: torch.Tensor,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat from RAM & DPIR
ram_time = time.time()
out = model(y=y, physics=physics.physics)
ram_time = time.time() - ram_time
dpir_time = time.time()
out_baseline = baseline(y=y, physics=physics.physics)
dpir_time = time.time() - dpir_time
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = f"Inference time = {ram_time:.3f}s" + "\n"
metrics_out_baseline = f"Inference time = {dpir_time:.3f}s" + "\n"
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI":
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
elif physics.name == "CT":
y_plot = physics.physics.A_adjoint(y)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
def get_dataset(dataset_name):
if dataset_name == 'MRI':
available_physics = ['MRI']
physics_name = 'MRI'
baseline_name = 'DPIR_MRI'
elif dataset_name == 'CT':
available_physics = ['CT']
physics_name = 'CT'
baseline_name = 'DPIR_CT'
else:
available_physics = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
physics_name = 'MotionBlur_easy'
baseline_name = 'DPIR'
dataset = get_dataset_on_DEVICE_STR(dataset_name)
idx = 0
physics = get_physics_on_DEVICE_STR(physics_name)
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
return dataset, idx, physics, baseline, available_physics
### Gradio Blocks interface
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
gr.Markdown("## " + title)
### DEFAULT VALUES
# Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
# Solution: using lambda expression
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
available_physics_placeholder = gr.State(['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'])
### LAYOUT
# Display images
with gr.Row():
gt_img = gr.Image(label="Ground-truth image", interactive=True)
observed_img = gr.Image(label="Observed image", interactive=False)
model_a_out = gr.Image(label="RAM output", interactive=False)
model_b_out = gr.Image(label="DPIR output", interactive=False)
@gr.render(inputs=[dataset_placeholder, physics_placeholder, available_physics_placeholder])
def dynamic_layout(dataset, physics, available_physics):
### LAYOUT
# Manage datasets and display metric values
with gr.Row():
with gr.Column(scale=1, min_width=160):
run_button = gr.Button("Demo on above image", size='md')
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="Datasets",
value=dataset.name)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", key=0)
with gr.Row():
load_button = gr.Button("Run on index image from dataset", size='md')
load_random_button = gr.Button("Run on random image from dataset", size='md')
with gr.Column(scale=1, min_width=160):
observed_metrics = gr.Textbox(label="PSNR Observed",
lines=1)
with gr.Column(scale=1, min_width=160):
out_a_metric = gr.Textbox(label="PSNR RAM output",
lines=1)
with gr.Column(scale=1, min_width=160):
out_b_metric = gr.Textbox(label="PSNR DPIR",
lines=1)
# Manage physics
with gr.Row():
with gr.Column(scale=1):
choose_physics = gr.Radio(choices=available_physics,
label="Physics",
value=physics.name)
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference", value=True)
with gr.Column(scale=1):
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key")
value_text = gr.Textbox(label="Update Value")
update_button = gr.Button("Manually update parameter value")
with gr.Column(scale=2):
physics_params = gr.Textbox(label="Physics parameters",
lines=5,
value=physics.display_saved_params())
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, idx_slider, physics_placeholder, model_b_placeholder, available_physics_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
update_button.click(fn=physics.update_and_display_params,
inputs=[key_selector, value_text], outputs=physics_params)
run_button.click(fn=generate_imgs_from_user,
inputs=[gt_img,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
interface.launch()