Spaces:
Runtime error
Runtime error
add inference time, remove global variable for user-specific variable, consistency in idx_slider
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
import random
|
|
|
|
| 4 |
from functools import partial
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List
|
|
@@ -20,7 +21,6 @@ torch.set_grad_enabled(False) # stops tracking values for gradients
|
|
| 20 |
|
| 21 |
|
| 22 |
### Gradio Utils
|
| 23 |
-
|
| 24 |
def generate_imgs_from_user(image,
|
| 25 |
model: EvalModel, baseline: BaselineModel,
|
| 26 |
physics: PhysicsWithGenerator, use_gen: bool,
|
|
@@ -60,37 +60,43 @@ def generate_imgs(x: torch.Tensor,
|
|
| 60 |
physics: PhysicsWithGenerator, use_gen: bool,
|
| 61 |
metrics: List[Metric]):
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
### Process y when y shape is different from x shape
|
| 92 |
-
if physics.name == "MRI"
|
| 93 |
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
|
|
|
|
|
|
|
| 94 |
else:
|
| 95 |
y_plot = y.clone()
|
| 96 |
|
|
@@ -114,28 +120,26 @@ get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
|
|
| 114 |
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
|
| 115 |
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
|
| 116 |
|
| 117 |
-
AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
|
| 118 |
-
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
|
| 119 |
def get_dataset(dataset_name):
|
| 120 |
-
global AVAILABLE_PHYSICS
|
| 121 |
if dataset_name == 'MRI':
|
| 122 |
-
|
| 123 |
-
baseline_name = 'DPIR_MRI'
|
| 124 |
physics_name = 'MRI'
|
|
|
|
| 125 |
elif dataset_name == 'CT':
|
| 126 |
-
|
| 127 |
-
baseline_name = 'DPIR_CT'
|
| 128 |
physics_name = 'CT'
|
|
|
|
| 129 |
else:
|
| 130 |
-
|
| 131 |
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
|
| 132 |
-
baseline_name = 'DPIR'
|
| 133 |
physics_name = 'MotionBlur_easy'
|
|
|
|
| 134 |
|
| 135 |
dataset = get_dataset_on_DEVICE_STR(dataset_name)
|
|
|
|
| 136 |
physics = get_physics_on_DEVICE_STR(physics_name)
|
| 137 |
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
|
| 138 |
-
return dataset, physics, baseline
|
| 139 |
|
| 140 |
|
| 141 |
### Gradio Blocks interface
|
|
@@ -144,28 +148,30 @@ title = "Inverse problem playground" # displayed on gradio tab and in the gradi
|
|
| 144 |
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
| 145 |
gr.Markdown("## " + title)
|
| 146 |
|
| 147 |
-
|
| 148 |
# Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
|
| 149 |
# Solution: using lambda expression
|
| 150 |
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
|
| 151 |
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
|
|
|
|
|
|
|
| 152 |
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
|
| 153 |
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
-
metric_names = ["PSNR"]
|
| 157 |
-
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(metric_names))
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
observed_img = gr.Image(label=f"Observed IMAGE", interactive=False)
|
| 167 |
-
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
|
| 168 |
-
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
|
| 169 |
|
| 170 |
# Manage datasets and display metric values
|
| 171 |
with gr.Row():
|
|
@@ -174,7 +180,7 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
| 174 |
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
|
| 175 |
label="Datasets",
|
| 176 |
value=dataset.name)
|
| 177 |
-
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index")
|
| 178 |
with gr.Row():
|
| 179 |
load_button = gr.Button("Run on index image from dataset")
|
| 180 |
load_random_button = gr.Button("Run on random image from dataset")
|
|
@@ -191,14 +197,14 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
| 191 |
# Manage physics
|
| 192 |
with gr.Row():
|
| 193 |
with gr.Column(scale=1):
|
| 194 |
-
choose_physics = gr.Radio(choices=
|
| 195 |
label="Physics",
|
| 196 |
value=physics.name)
|
| 197 |
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference")
|
| 198 |
with gr.Column(scale=1):
|
| 199 |
with gr.Row():
|
| 200 |
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
|
| 201 |
-
|
| 202 |
value_text = gr.Textbox(label="Update Value")
|
| 203 |
update_button = gr.Button("Manually update parameter value")
|
| 204 |
with gr.Column(scale=2):
|
|
@@ -211,7 +217,7 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
| 211 |
|
| 212 |
choose_dataset.change(fn=get_dataset,
|
| 213 |
inputs=choose_dataset,
|
| 214 |
-
outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder])
|
| 215 |
choose_physics.change(fn=get_physics_on_DEVICE_STR,
|
| 216 |
inputs=choose_physics,
|
| 217 |
outputs=[physics_placeholder])
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
import random
|
| 4 |
+
import time
|
| 5 |
from functools import partial
|
| 6 |
from pathlib import Path
|
| 7 |
from typing import List
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
### Gradio Utils
|
|
|
|
| 24 |
def generate_imgs_from_user(image,
|
| 25 |
model: EvalModel, baseline: BaselineModel,
|
| 26 |
physics: PhysicsWithGenerator, use_gen: bool,
|
|
|
|
| 60 |
physics: PhysicsWithGenerator, use_gen: bool,
|
| 61 |
metrics: List[Metric]):
|
| 62 |
|
| 63 |
+
### Compute y
|
| 64 |
+
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
|
| 65 |
+
|
| 66 |
+
### Compute x_hat from RAM & DPIR
|
| 67 |
+
ram_time = time.time()
|
| 68 |
+
out = model(y=y, physics=physics.physics)
|
| 69 |
+
ram_time = time.time() - ram_time
|
| 70 |
+
|
| 71 |
+
dpir_time = time.time()
|
| 72 |
+
out_baseline = baseline(y=y, physics=physics.physics)
|
| 73 |
+
dpir_time = time.time() - dpir_time
|
| 74 |
+
|
| 75 |
+
### Process tensors before metric computation
|
| 76 |
+
if "Blur" in physics.name:
|
| 77 |
+
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
|
| 78 |
+
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
|
| 79 |
+
|
| 80 |
+
x = x[..., w_1:w_2, h_1:h_2]
|
| 81 |
+
out = out[..., w_1:w_2, h_1:h_2]
|
| 82 |
+
if out_baseline.shape != out.shape:
|
| 83 |
+
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
|
| 84 |
+
|
| 85 |
+
### Metrics
|
| 86 |
+
metrics_y = ""
|
| 87 |
+
metrics_out = f"Inference time = {ram_time:.3f}s" + "\n"
|
| 88 |
+
metrics_out_baseline = f"Inference time = {dpir_time:.3f}s" + "\n"
|
| 89 |
+
for metric in metrics:
|
| 90 |
+
if y.shape == x.shape:
|
| 91 |
+
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
|
| 92 |
+
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
|
| 93 |
+
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
|
| 94 |
|
| 95 |
### Process y when y shape is different from x shape
|
| 96 |
+
if physics.name == "MRI":
|
| 97 |
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
|
| 98 |
+
elif physics.name == "CT":
|
| 99 |
+
y_plot = physics.physics.A_adjoint(y)
|
| 100 |
else:
|
| 101 |
y_plot = y.clone()
|
| 102 |
|
|
|
|
| 120 |
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
|
| 121 |
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
|
| 122 |
|
|
|
|
|
|
|
| 123 |
def get_dataset(dataset_name):
|
|
|
|
| 124 |
if dataset_name == 'MRI':
|
| 125 |
+
available_physics = ['MRI']
|
|
|
|
| 126 |
physics_name = 'MRI'
|
| 127 |
+
baseline_name = 'DPIR_MRI'
|
| 128 |
elif dataset_name == 'CT':
|
| 129 |
+
available_physics = ['CT']
|
|
|
|
| 130 |
physics_name = 'CT'
|
| 131 |
+
baseline_name = 'DPIR_CT'
|
| 132 |
else:
|
| 133 |
+
available_physics = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
|
| 134 |
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
|
|
|
|
| 135 |
physics_name = 'MotionBlur_easy'
|
| 136 |
+
baseline_name = 'DPIR'
|
| 137 |
|
| 138 |
dataset = get_dataset_on_DEVICE_STR(dataset_name)
|
| 139 |
+
idx = 0
|
| 140 |
physics = get_physics_on_DEVICE_STR(physics_name)
|
| 141 |
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
|
| 142 |
+
return dataset, idx, physics, baseline, available_physics
|
| 143 |
|
| 144 |
|
| 145 |
### Gradio Blocks interface
|
|
|
|
| 148 |
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
| 149 |
gr.Markdown("## " + title)
|
| 150 |
|
| 151 |
+
### DEFAULT VALUES
|
| 152 |
# Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
|
| 153 |
# Solution: using lambda expression
|
| 154 |
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
|
| 155 |
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
|
| 156 |
+
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
|
| 157 |
+
|
| 158 |
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
|
| 159 |
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
|
| 160 |
+
available_physics_placeholder = gr.State(['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
|
| 161 |
+
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'])
|
| 162 |
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
### LAYOUT
|
| 165 |
+
# Display images
|
| 166 |
+
with gr.Row():
|
| 167 |
+
gt_img = gr.Image(label="Ground-truth IMAGE", interactive=True)
|
| 168 |
+
observed_img = gr.Image(label="Observed IMAGE", interactive=False)
|
| 169 |
+
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
|
| 170 |
+
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
|
| 171 |
|
| 172 |
+
@gr.render(inputs=[dataset_placeholder, physics_placeholder, available_physics_placeholder])
|
| 173 |
+
def dynamic_layout(dataset, physics, available_physics):
|
| 174 |
+
### LAYOUT
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
# Manage datasets and display metric values
|
| 177 |
with gr.Row():
|
|
|
|
| 180 |
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
|
| 181 |
label="Datasets",
|
| 182 |
value=dataset.name)
|
| 183 |
+
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", key=0)
|
| 184 |
with gr.Row():
|
| 185 |
load_button = gr.Button("Run on index image from dataset")
|
| 186 |
load_random_button = gr.Button("Run on random image from dataset")
|
|
|
|
| 197 |
# Manage physics
|
| 198 |
with gr.Row():
|
| 199 |
with gr.Column(scale=1):
|
| 200 |
+
choose_physics = gr.Radio(choices=available_physics,
|
| 201 |
label="Physics",
|
| 202 |
value=physics.name)
|
| 203 |
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference")
|
| 204 |
with gr.Column(scale=1):
|
| 205 |
with gr.Row():
|
| 206 |
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
|
| 207 |
+
label="Updatable Parameter Key")
|
| 208 |
value_text = gr.Textbox(label="Update Value")
|
| 209 |
update_button = gr.Button("Manually update parameter value")
|
| 210 |
with gr.Column(scale=2):
|
|
|
|
| 217 |
|
| 218 |
choose_dataset.change(fn=get_dataset,
|
| 219 |
inputs=choose_dataset,
|
| 220 |
+
outputs=[dataset_placeholder, idx_slider, physics_placeholder, model_b_placeholder, available_physics_placeholder])
|
| 221 |
choose_physics.change(fn=get_physics_on_DEVICE_STR,
|
| 222 |
inputs=choose_physics,
|
| 223 |
outputs=[physics_placeholder])
|