Spaces:
Sleeping
Sleeping
debug
Browse files- app.py +3 -5
- factories.py +4 -4
- requirements.txt +1 -1
app.py
CHANGED
@@ -80,16 +80,14 @@ def generate_imgs(x: torch.Tensor,
|
|
80 |
print(f"[Before inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
|
81 |
print(f"[Before inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
elif hasattr(physics.physics, 'img_size'):
|
86 |
-
physics.physics.img_size = x.shape[1:]
|
87 |
-
elif hasattr(physics.physics, 'tensor_size'):
|
88 |
physics.physics.tensor_size = x.shape[1:]
|
89 |
|
90 |
if physics.physics_generator is not None: # we only change physic params but not noise levels
|
91 |
if hasattr(physics.physics_generator, 'tensor_size'):
|
92 |
physics.physics_generator.tensor_size = x.shape[1:]
|
|
|
93 |
|
94 |
### Compute y
|
95 |
with torch.no_grad():
|
|
|
80 |
print(f"[Before inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
|
81 |
print(f"[Before inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
|
82 |
|
83 |
+
|
84 |
+
if hasattr(physics.physics, 'tensor_size'):
|
|
|
|
|
|
|
85 |
physics.physics.tensor_size = x.shape[1:]
|
86 |
|
87 |
if physics.physics_generator is not None: # we only change physic params but not noise levels
|
88 |
if hasattr(physics.physics_generator, 'tensor_size'):
|
89 |
physics.physics_generator.tensor_size = x.shape[1:]
|
90 |
+
physics.generator.tensor_size = x.shape[1:]
|
91 |
|
92 |
### Compute y
|
93 |
with torch.no_grad():
|
factories.py
CHANGED
@@ -86,16 +86,16 @@ class PhysicsWithGenerator(torch.nn.Module):
|
|
86 |
elif self.name == "Inpainting":
|
87 |
sigma = 0.05
|
88 |
split_ratio = 0.3
|
89 |
-
pixelwise =
|
90 |
-
self.physics = dinv.physics.Inpainting(tensor_size=(256, 256), mask=split_ratio,
|
91 |
noise_model=dinv.physics.GaussianNoise(sigma=sigma),
|
92 |
device=device_str)
|
93 |
self.physics_generator = dinv.physics.generator.BernoulliSplittingMaskGenerator((3, 256, 256),
|
94 |
split_ratio=split_ratio, pixelwise=pixelwise,
|
95 |
-
random_split_ratio=
|
96 |
self.generator = dinv.physics.generator.BernoulliSplittingMaskGenerator((3, 256, 256),
|
97 |
split_ratio=split_ratio, pixelwise=pixelwise,
|
98 |
-
random_split_ratio=
|
99 |
|
100 |
self.saved_params = {"updatable_params": {},
|
101 |
"updatable_params_converter": {"sigma": float},
|
|
|
86 |
elif self.name == "Inpainting":
|
87 |
sigma = 0.05
|
88 |
split_ratio = 0.3
|
89 |
+
pixelwise = True
|
90 |
+
self.physics = dinv.physics.Inpainting(tensor_size=(3, 256, 256), mask=split_ratio,
|
91 |
noise_model=dinv.physics.GaussianNoise(sigma=sigma),
|
92 |
device=device_str)
|
93 |
self.physics_generator = dinv.physics.generator.BernoulliSplittingMaskGenerator((3, 256, 256),
|
94 |
split_ratio=split_ratio, pixelwise=pixelwise,
|
95 |
+
random_split_ratio=False, device=device_str)
|
96 |
self.generator = dinv.physics.generator.BernoulliSplittingMaskGenerator((3, 256, 256),
|
97 |
split_ratio=split_ratio, pixelwise=pixelwise,
|
98 |
+
random_split_ratio=False, device=device_str)
|
99 |
|
100 |
self.saved_params = {"updatable_params": {},
|
101 |
"updatable_params_converter": {"sigma": float},
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
git+https://github.com/deepinv/deepinv.git
|
2 |
timm
|
|
|
1 |
+
git+https://github.com/deepinv/deepinv.git
|
2 |
timm
|