Spaces:
Sleeping
Sleeping
[Feat] Apply methods on user image
Browse files
app.py
CHANGED
@@ -18,14 +18,31 @@ DEVICE_STR = 'cuda'
|
|
18 |
|
19 |
|
20 |
### Gradio Utils
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
### Load 1 image
|
26 |
x = dataset[idx] # shape : (3, 256, 256)
|
27 |
x = x.unsqueeze(0) # shape : (1, 3, 256, 256)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
with torch.no_grad():
|
30 |
### Compute y
|
31 |
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
|
@@ -71,23 +88,18 @@ def generate_imgs(dataset: EvalDataset, idx: int,
|
|
71 |
out = to_pil(process_img(out)[0].to('cpu'))
|
72 |
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
|
73 |
|
74 |
-
|
75 |
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
|
76 |
|
77 |
-
def
|
78 |
model: EvalModel,
|
79 |
baseline: BaselineModel,
|
80 |
physics: PhysicsWithGenerator,
|
81 |
use_gen: bool,
|
82 |
metrics: List[Metric]):
|
83 |
idx = random.randint(0, len(dataset)-1)
|
84 |
-
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline =
|
85 |
-
|
86 |
-
|
87 |
-
baseline,
|
88 |
-
physics,
|
89 |
-
use_gen,
|
90 |
-
metrics)
|
91 |
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
|
92 |
|
93 |
|
@@ -151,7 +163,7 @@ with gr.Blocks(title=title, css=custom_css) as interface:
|
|
151 |
with gr.Column():
|
152 |
with gr.Row():
|
153 |
with gr.Column():
|
154 |
-
clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=
|
155 |
physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
|
156 |
with gr.Column():
|
157 |
y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
|
@@ -189,9 +201,10 @@ with gr.Blocks(title=title, css=custom_css) as interface:
|
|
189 |
value=metric_names,
|
190 |
label="Choose metrics you are interested")
|
191 |
use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
|
|
|
192 |
with gr.Column(scale=1):
|
193 |
-
load_button = gr.Button("Load images...")
|
194 |
-
load_random_button = gr.Button("Load randomly...")
|
195 |
|
196 |
### Event listeners
|
197 |
choose_dataset.change(fn=get_dataset,
|
@@ -204,7 +217,15 @@ with gr.Blocks(title=title, css=custom_css) as interface:
|
|
204 |
choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
|
205 |
inputs=choose_metrics,
|
206 |
outputs=metrics_placeholder)
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
inputs=[dataset_placeholder,
|
209 |
idx_slider,
|
210 |
model_a_placeholder,
|
@@ -213,7 +234,7 @@ with gr.Blocks(title=title, css=custom_css) as interface:
|
|
213 |
use_generator_button,
|
214 |
metrics_placeholder],
|
215 |
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
|
216 |
-
load_random_button.click(fn=
|
217 |
inputs=[dataset_placeholder,
|
218 |
model_a_placeholder,
|
219 |
model_b_placeholder,
|
|
|
18 |
|
19 |
|
20 |
### Gradio Utils
|
21 |
+
|
22 |
+
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
|
23 |
+
model: EvalModel, baseline: BaselineModel,
|
24 |
+
physics: PhysicsWithGenerator, use_gen: bool,
|
25 |
+
metrics: List[Metric]):
|
26 |
### Load 1 image
|
27 |
x = dataset[idx] # shape : (3, 256, 256)
|
28 |
x = x.unsqueeze(0) # shape : (1, 3, 256, 256)
|
29 |
|
30 |
+
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
|
31 |
+
|
32 |
+
def generate_imgs_from_user(image,
|
33 |
+
model: EvalModel, baseline: BaselineModel,
|
34 |
+
physics: PhysicsWithGenerator, use_gen: bool,
|
35 |
+
metrics: List[Metric]):
|
36 |
+
# PIL image -> torch.Tensor
|
37 |
+
x = transforms.ToTensor()(image).unsqueeze(0)
|
38 |
+
|
39 |
+
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
|
40 |
+
|
41 |
+
def generate_imgs(x: torch.Tensor,
|
42 |
+
model: EvalModel, baseline: BaselineModel,
|
43 |
+
physics: PhysicsWithGenerator, use_gen: bool,
|
44 |
+
metrics: List[Metric]):
|
45 |
+
|
46 |
with torch.no_grad():
|
47 |
### Compute y
|
48 |
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
|
|
|
88 |
out = to_pil(process_img(out)[0].to('cpu'))
|
89 |
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
|
90 |
|
|
|
91 |
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
|
92 |
|
93 |
+
def generate_random_imgs_from_dataset(dataset: EvalDataset,
|
94 |
model: EvalModel,
|
95 |
baseline: BaselineModel,
|
96 |
physics: PhysicsWithGenerator,
|
97 |
use_gen: bool,
|
98 |
metrics: List[Metric]):
|
99 |
idx = random.randint(0, len(dataset)-1)
|
100 |
+
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
|
101 |
+
dataset, idx, model, baseline, physics, use_gen, metrics
|
102 |
+
)
|
|
|
|
|
|
|
|
|
103 |
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
|
104 |
|
105 |
|
|
|
163 |
with gr.Column():
|
164 |
with gr.Row():
|
165 |
with gr.Column():
|
166 |
+
clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=True)
|
167 |
physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
|
168 |
with gr.Column():
|
169 |
y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
|
|
|
201 |
value=metric_names,
|
202 |
label="Choose metrics you are interested")
|
203 |
use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
|
204 |
+
run_button = gr.Button("Run current image")
|
205 |
with gr.Column(scale=1):
|
206 |
+
load_button = gr.Button("Load images from dataset...")
|
207 |
+
load_random_button = gr.Button("Load randomly from dataset...")
|
208 |
|
209 |
### Event listeners
|
210 |
choose_dataset.change(fn=get_dataset,
|
|
|
217 |
choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
|
218 |
inputs=choose_metrics,
|
219 |
outputs=metrics_placeholder)
|
220 |
+
run_button.click(fn=generate_imgs_from_user,
|
221 |
+
inputs=[clean,
|
222 |
+
model_a_placeholder,
|
223 |
+
model_b_placeholder,
|
224 |
+
physics_placeholder,
|
225 |
+
use_generator_button,
|
226 |
+
metrics_placeholder],
|
227 |
+
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
|
228 |
+
load_button.click(fn=generate_imgs_from_dataset,
|
229 |
inputs=[dataset_placeholder,
|
230 |
idx_slider,
|
231 |
model_a_placeholder,
|
|
|
234 |
use_generator_button,
|
235 |
metrics_placeholder],
|
236 |
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
|
237 |
+
load_random_button.click(fn=generate_random_imgs_from_dataset,
|
238 |
inputs=[dataset_placeholder,
|
239 |
model_a_placeholder,
|
240 |
model_b_placeholder,
|