Spaces:
Running
on
T4
Running
on
T4
update interface
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ def resize_tensor_within_box(tensor_img: torch.Tensor, max_size: int = 512):
|
|
28 |
return tensor_img
|
29 |
|
30 |
def generate_imgs_from_user(image,
|
31 |
-
physics: PhysicsWithGenerator, use_gen: bool,
|
32 |
baseline: BaselineModel, model: EvalModel,
|
33 |
metrics: List[Metric]):
|
34 |
# Happens when user image is missing
|
@@ -242,13 +242,10 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
242 |
with gr.Row():
|
243 |
with gr.Column(scale=1, min_width=160):
|
244 |
run_button = gr.Button("Demo on above image", size='md')
|
245 |
-
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
|
246 |
-
label="Datasets",
|
247 |
-
value=dataset.name)
|
248 |
-
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", key='idx_slider')
|
249 |
with gr.Row():
|
250 |
load_button = gr.Button("Run on index image from dataset", size='md')
|
251 |
load_random_button = gr.Button("Run on random image from dataset", size='md')
|
|
|
252 |
with gr.Column(scale=1, min_width=160):
|
253 |
observed_metrics = gr.Textbox(label="Observed metric", lines=2, key='metrics')
|
254 |
with gr.Column(scale=1, min_width=160):
|
@@ -256,13 +253,16 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
256 |
with gr.Column(scale=1, min_width=160):
|
257 |
out_b_metric = gr.Textbox(label="DPIR output metrics", lines=2, key='dpir_metrics')
|
258 |
|
259 |
-
# Manage physics
|
260 |
with gr.Row():
|
261 |
with gr.Column(scale=1):
|
262 |
choose_physics = gr.Radio(choices=available_physics,
|
263 |
label="Physics",
|
264 |
value=physics.name)
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
with gr.Column(scale=1):
|
267 |
with gr.Row():
|
268 |
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
|
@@ -272,7 +272,7 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
272 |
with gr.Column(scale=2):
|
273 |
physics_params = gr.Textbox(label="Physics parameters",
|
274 |
lines=5,
|
275 |
-
value=physics.display_saved_params())
|
276 |
|
277 |
### Event listeners
|
278 |
|
@@ -287,7 +287,7 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
287 |
run_button.click(fn=generate_imgs_from_user_partial,
|
288 |
inputs=[gt_img,
|
289 |
physics_placeholder,
|
290 |
-
use_generator_button,
|
291 |
model_b_placeholder],
|
292 |
outputs=[gt_img, observed_img, model_a_out, model_b_out,
|
293 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|
@@ -295,14 +295,14 @@ with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
|
|
295 |
inputs=[dataset_placeholder,
|
296 |
idx_slider,
|
297 |
physics_placeholder,
|
298 |
-
use_generator_button,
|
299 |
model_b_placeholder],
|
300 |
outputs=[gt_img, observed_img, model_a_out, model_b_out,
|
301 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|
302 |
load_random_button.click(fn=generate_random_imgs_from_dataset_partial,
|
303 |
inputs=[dataset_placeholder,
|
304 |
physics_placeholder,
|
305 |
-
use_generator_button,
|
306 |
model_b_placeholder],
|
307 |
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
|
308 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|
|
|
28 |
return tensor_img
|
29 |
|
30 |
def generate_imgs_from_user(image,
|
31 |
+
physics: PhysicsWithGenerator, # use_gen: bool,
|
32 |
baseline: BaselineModel, model: EvalModel,
|
33 |
metrics: List[Metric]):
|
34 |
# Happens when user image is missing
|
|
|
242 |
with gr.Row():
|
243 |
with gr.Column(scale=1, min_width=160):
|
244 |
run_button = gr.Button("Demo on above image", size='md')
|
|
|
|
|
|
|
|
|
245 |
with gr.Row():
|
246 |
load_button = gr.Button("Run on index image from dataset", size='md')
|
247 |
load_random_button = gr.Button("Run on random image from dataset", size='md')
|
248 |
+
|
249 |
with gr.Column(scale=1, min_width=160):
|
250 |
observed_metrics = gr.Textbox(label="Observed metric", lines=2, key='metrics')
|
251 |
with gr.Column(scale=1, min_width=160):
|
|
|
253 |
with gr.Column(scale=1, min_width=160):
|
254 |
out_b_metric = gr.Textbox(label="DPIR output metrics", lines=2, key='dpir_metrics')
|
255 |
|
|
|
256 |
with gr.Row():
|
257 |
with gr.Column(scale=1):
|
258 |
choose_physics = gr.Radio(choices=available_physics,
|
259 |
label="Physics",
|
260 |
value=physics.name)
|
261 |
+
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
|
262 |
+
label="Datasets",
|
263 |
+
value=dataset.name)
|
264 |
+
idx_slider = gr.Slider(minimum=0, maximum=len(dataset) - 1, step=1, label="Sample index",
|
265 |
+
key='idx_slider')
|
266 |
with gr.Column(scale=1):
|
267 |
with gr.Row():
|
268 |
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
|
|
|
272 |
with gr.Column(scale=2):
|
273 |
physics_params = gr.Textbox(label="Physics parameters",
|
274 |
lines=5,
|
275 |
+
value=physics.display_saved_params())
|
276 |
|
277 |
### Event listeners
|
278 |
|
|
|
287 |
run_button.click(fn=generate_imgs_from_user_partial,
|
288 |
inputs=[gt_img,
|
289 |
physics_placeholder,
|
290 |
+
# use_generator_button,
|
291 |
model_b_placeholder],
|
292 |
outputs=[gt_img, observed_img, model_a_out, model_b_out,
|
293 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|
|
|
295 |
inputs=[dataset_placeholder,
|
296 |
idx_slider,
|
297 |
physics_placeholder,
|
298 |
+
# use_generator_button,
|
299 |
model_b_placeholder],
|
300 |
outputs=[gt_img, observed_img, model_a_out, model_b_out,
|
301 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|
302 |
load_random_button.click(fn=generate_random_imgs_from_dataset_partial,
|
303 |
inputs=[dataset_placeholder,
|
304 |
physics_placeholder,
|
305 |
+
# use_generator_button,
|
306 |
model_b_placeholder],
|
307 |
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
|
308 |
physics_params, observed_metrics, out_a_metric, out_b_metric])
|