File size: 8,270 Bytes
a086192
 
4071be5
 
0df0d2a
83f79f0
0df0d2a
d051287
a086192
4071be5
 
 
 
d051287
4cbbc18
 
0df0d2a
bf55023
32a7408
 
 
 
 
 
4071be5
0df0d2a
 
4071be5
32a7408
 
 
 
 
 
 
 
 
83f79f0
4071be5
 
 
 
 
 
 
 
 
 
 
 
bf55023
4071be5
e8a8bfe
4071be5
0df0d2a
 
 
32a7408
d051287
 
0df0d2a
32a7408
4071be5
0df0d2a
bf55023
 
 
 
 
 
 
d051287
 
 
32a7408
 
 
 
 
0df0d2a
32a7408
0df0d2a
 
 
 
32a7408
0df0d2a
32a7408
 
 
 
 
 
0df0d2a
32a7408
 
 
0df0d2a
 
 
 
 
 
 
 
32a7408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d051287
 
 
 
 
 
 
32a7408
 
d051287
32a7408
d051287
32a7408
 
 
 
 
 
 
 
 
 
 
 
d051287
32a7408
 
 
 
 
 
 
 
 
 
 
d051287
32a7408
 
 
 
 
 
 
 
 
 
 
 
0df0d2a
32a7408
 
 
 
 
83f79f0
32a7408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d051287
32a7408
d051287
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st
import pandas as pd
import logging
from deeploy import Client
from utils import get_request_body, get_fake_certainty, get_model_url, get_random_suspicious_transaction
from utils import get_explainability_texts, get_explainability_values, send_evaluation, get_comment_explanation
from utils import COL_NAMES, feature_texts
from utils import create_data_input_table, create_table, ChangeButtonColour, get_weights

logging.basicConfig(level=logging.INFO)

st.set_page_config(layout="wide")

st.title("Smart AML:tm:")
st.divider()

data = pd.read_pickle("data/preprocessed_data.pkl")

if 'predict_button_clicked' not in st.session_state:
    st.session_state.predict_button_clicked = False


if "submitted_disabled" not in st.session_state:
    st.session_state.submitted_disabled = False

if "disabled" not in st.session_state:
    st.session_state.disabled = False

def disabled():
    st.session_state.disabled = True

def rerun():
    st.session_state.predict_button_clicked = True
    st.session_state.submitted_disabled = False

def submitted_disabled():
    st.session_state.submitted_disabled = True

st.markdown("""
    <style>
        [data-testid=stSidebar] {
            background-color: #E0E0E0; ##E5E6EA
        }
    </style>
    """, unsafe_allow_html=True)

with st.sidebar:
    # Add deeploy logo
    st.image("deeploy_logo.png", width=270)
    # Ask for model URL and token
    host = st.text_input("Host (changing is optional)", "app.deeploy.ml")
    model_url, workspace_id, deployment_id = get_model_url()
    deployment_token = st.text_input("Deeploy Model Token", "my-secret-token") # my-secret-token
    if deployment_token == "my-secret-token":
        st.warning(
            "Please enter Deeploy API token."
        )
    else: 
        st.button("Get suspicious transaction", key="predict_button", help="Click to get a suspicious transaction", use_container_width=True, on_click=disabled, disabled=st.session_state.disabled
    ) #on_click=lambda: st.experimental_rerun() 
        ChangeButtonColour("Get suspicious transaction", '#FFFFFF', "#00052D")#'#FFFFFF', "#00052D"


    # define client optsions and instantiate client
    client_options = {
    "host": host,
    "deployment_token": deployment_token,
    "workspace_id": workspace_id,
    }
    client = Client(**client_options)

if 'predict_button' not in st.session_state:
    st.session_state.predict_button = False

if st.session_state.predict_button: #  and not st.session_state.predict_button_clicked
    st.session_state.predict_button_clicked = True

if 'got_explanation' not in st.session_state:
    st.session_state.got_explanation = False

if st.session_state.predict_button_clicked:
    try:
        with st.spinner("Loading..."):
            datapoint_pd = get_random_suspicious_transaction(data)
            request_body = get_request_body(datapoint_pd)
            # Call the explain endpoint as it also includes the prediction
            exp = client.explain(request_body=request_body, deployment_id=deployment_id)
            # request_log_id = exp["requestLogId"]
            # prediction_log_id = exp["predictionLogIds"][0]
            st.session_state.shap_values = exp['explanations'][0]['shap_values']
            st.session_state.request_log_id = exp["requestLogId"]
            st.session_state.prediction_log_id = exp["predictionLogIds"][0]
            st.session_state.datapoint_pd = datapoint_pd
            certainty = get_fake_certainty()
            st.session_state.certainty = certainty
            st.session_state.got_explanation = True
            st.session_state.predict_button_clicked = False
    except Exception as e:
        logging.error(e)
        st.error(
            "Failed to retrieve the prediction or explanation."
            + "Check whether you are using the right model URL and Token. "
            + "Contact Deeploy if the problem persists."
        )

if not st.session_state.got_explanation:
        st.info(
        "Fill in left hand side and click on button to observe a potential fraudulent transaction"
        )
if st.session_state.got_explanation:
    shap_values = st.session_state.shap_values
    request_log_id = st.session_state.request_log_id
    prediction_log_id = st.session_state.prediction_log_id
    datapoint_pd = st.session_state.datapoint_pd
    certainty = st.session_state.certainty

    col1, col2 = st.columns(2)

    with col1:
        create_data_input_table(datapoint_pd, COL_NAMES)

    with col2:
        st.subheader('AML Model Hit')
        # st.success(f'{certainty}')
        # st.metric(label='Model Certainty', value=certainty)
        # style_metric_cards(border_left_color='#00052D', box_shadow=False)
        # # st.markdown('#### Model Certainty')
        st.metric(label='Model Certainty', value=certainty)
        

        explainability_texts, sorted_indices = get_explainability_texts(shap_values, feature_texts)
        weights = get_weights(shap_values, sorted_indices)
        explainability_values = get_explainability_values(sorted_indices, datapoint_pd)
        create_table(explainability_texts, explainability_values, weights, 'Important Suspicious Factors')

    st.subheader("")
    # st.markdown("<h2 style='text-align: center; white: red;'>Evaluation</h2>", unsafe_allow_html=True)

    if 'eval_selected' not in st.session_state:
        st.session_state['eval_selected'] = False


    col3, col4 = st.columns(2)
    with col3:
        eval1 = st.empty()
        eval1.button("Send to FIU", key="yes_button", use_container_width=True, disabled=st.session_state.submitted_disabled)
        ChangeButtonColour("Send to FIU", '#FFFFFF', '#4C506C') #'#FFFFFF', "#DD360C"
        st.session_state.yes_button_clicked = False

    if st.session_state.yes_button:
        st.session_state.eval_selected = True
        st.session_state.evaluation_input = {
            "result": 0 # Agree with the prediction
        }
        
    with col4:
        eval2 = st.empty()
        eval2.button("Not money laundering", key="no_button", use_container_width=True, disabled=st.session_state.submitted_disabled)
        ChangeButtonColour("Not money laundering", '#FFFFFF', '#4C506C') # '#FFFFFF', "#46B071",   '#FFFFFF', "#666666"
        st.session_state.no_button_clicked = False


    if st.session_state.no_button:
        st.session_state.no_button_clicked = True
    if st.session_state.no_button_clicked:
        st.session_state.eval_selected = True
        desired_output = 1
        st.session_state.evaluation_input = {
            "result": 1, # Disagree with the prediction
            "value": {"predictions": [desired_output]},
        }

    success = False
    if st.session_state.eval_selected:
        # st.write('after eval')
        # st.write(st.session_state)
        if st.session_state.yes_button:
            explanation = get_comment_explanation(certainty, explainability_texts, explainability_values)
            comment = st.text_area("Reason for evaluation:", explanation)
            st.session_state.evaluation_input["explanation"] = comment
        if st.session_state.no_button:
            comment = st.text_area("Reason for evaluation:", "I don't think this transaction is money laundering because...")
            st.session_state.evaluation_input["explanation"] = comment
        logging.debug("Selected feedback:" + str(st.session_state.evaluation_input))
        eval3 = st.empty()
        eval3.button("Submit", key="submit_button", use_container_width=True, on_click=submitted_disabled, disabled=st.session_state.submitted_disabled)
        ChangeButtonColour("Submit", '#FFFFFF', "#00052D")
        if st.session_state.submit_button:
            st.session_state.eval_selected = False
            success = send_evaluation(client, deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input)
    if success:
        st.session_state.eval_selected = False
        st.session_state.submitted = True
        eval1.empty()
        eval2.empty()
        eval3.empty()
        st.warning("Feedback submitted successfully")
        st.button("Next", key='next', use_container_width=True, on_click=rerun)
        ChangeButtonColour("Next", '#FFFFFF', "#00052D") #'#FFFFFF', #F9B917" "#DD360C  #457EA4