File size: 11,472 Bytes
a086192 4071be5 85b7407 6877f18 0df0d2a 6877f18 a086192 4071be5 d051287 4cbbc18 6877f18 0df0d2a bf55023 6877f18 32a7408 4071be5 0df0d2a 4071be5 6877f18 85b7407 6877f18 85b7407 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 83f79f0 6877f18 4071be5 6877f18 4071be5 bf55023 4071be5 93f0de5 4071be5 6877f18 0df0d2a 6877f18 4071be5 6877f18 bf55023 6877f18 bf55023 6877f18 d051287 6877f18 32a7408 6877f18 32a7408 0df0d2a 6877f18 32a7408 0df0d2a 32a7408 0df0d2a 6877f18 32a7408 0df0d2a 32a7408 0df0d2a 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 304bada 32a7408 6877f18 32a7408 6877f18 32a7408 304bada 32a7408 6877f18 32a7408 6877f18 d051287 304bada 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 85b7407 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 85b7407 32a7408 0df0d2a 6877f18 32a7408 6877f18 32a7408 6877f18 85b7407 6877f18 32a7408 6877f18 85b7407 6877f18 32a7408 6877f18 32a7408 6877f18 32a7408 85b7407 6877f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import streamlit as st
import pandas as pd
import logging
from deeploy import Client, CreateEvaluation
from utils import (
get_request_body,
get_fake_certainty,
get_model_url,
get_random_suspicious_transaction,
)
from utils import (
get_explainability_texts,
get_explainability_values,
send_evaluation,
get_comment_explanation,
)
from utils import COL_NAMES, feature_texts
from utils import (
create_data_input_table,
create_table,
ChangeButtonColour,
get_weights,
modify_datapoint,
)
logging.basicConfig(level=logging.INFO)
st.set_page_config(layout="wide")
st.title("Smart AML:tm:")
st.divider()
# Import data
data = pd.read_pickle("data/preprocessed_data.pkl")
# instantiate important vars in session state
if "predict_button_clicked" not in st.session_state:
st.session_state.predict_button_clicked = False
if "submitted_disabled" not in st.session_state:
st.session_state.submitted_disabled = False
if "disabled" not in st.session_state:
st.session_state.disabled = False
if "no_button_text" not in st.session_state:
st.session_state.no_button_text = (
"I don't think this transaction is money laundering because..."
)
if "yes_button_text" not in st.session_state:
st.session_state.yes_button_text = ""
if "yes_button_clicked" not in st.session_state:
st.session_state.yes_button_clicked = False
# define functions to be run when buttons are clicked
# func to be run when input changes in no button text area
def get_input_no_button():
st.session_state.no_button_text = comment.replace(
st.session_state.no_button_text, st.session_state.no_comment
)
st.session_state.evaluation_input["comment"] = st.session_state.no_button_text
# func to be run when input changes in yes button text area
def get_input_yes_button():
st.session_state.yes_button_text = comment.replace(
st.session_state.yes_button_text, st.session_state.yes_comment
)
st.session_state.evaluation_input["comment"] = st.session_state.yes_button_text
# func to disable click again for button "Get suspicious transactions"
def disabled():
st.session_state.disabled = True
# func for Next button to rerun and get new prediction
def rerun():
st.session_state.predict_button_clicked = True
st.session_state.submitted_disabled = False
st.session_state.no_button_text = (
"I don't think this transaction is money laundering because..."
)
# func for submit button to disable resubmit
def submitted_disabled():
st.session_state.submitted_disabled = True
# color specs for sidebar
st.markdown(
"""
<style>
[data-testid=stSidebar] {
background-color: #E0E0E0; ##E5E6EA
}
</style>
""",
unsafe_allow_html=True,
)
with st.sidebar:
# Add deeploy logo
st.image("deeploy_logo.png", width=270)
# Ask for model URL and token
host = st.text_input("Host (changing is optional)", "app.deeploy.ml")
model_url, workspace_id, deployment_id = get_model_url()
deployment_token = st.text_input("Deeploy API token", "my-secret-token")
if deployment_token == "my-secret-token":
# show warning until token has been filled in
st.warning("Please enter Deeploy API token.")
else:
st.button(
"Get suspicious transaction",
key="predict_button",
help="Click to get a suspicious transaction",
use_container_width=True,
on_click=disabled,
disabled=st.session_state.disabled,
)
ChangeButtonColour("Get suspicious transaction", "#FFFFFF", "#00052D")
# define client options and instantiate client
client_options = {
"host": host,
"deployment_token": deployment_token,
"workspace_id": workspace_id,
}
client = Client(**client_options)
# instantiate session state vars to define whether predict button has been clicked
# and explanation was retrieved
if "predict_button" not in st.session_state:
st.session_state.predict_button = False
if st.session_state.predict_button:
st.session_state.predict_button_clicked = True
if "got_explanation" not in st.session_state:
st.session_state.got_explanation = False
# make prediction and explanation calls and store important vars
if st.session_state.predict_button_clicked:
try:
with st.spinner("Loading..."):
datapoint_pd = get_random_suspicious_transaction(data)
request_body = get_request_body(datapoint_pd)
# Call the explain endpoint as it also includes the prediction
exp = client.explain(request_body=request_body, deployment_id=deployment_id)
st.session_state.shap_values = exp["explanations"][0]["shap_values"]
st.session_state.request_log_id = exp["requestLogId"]
st.session_state.prediction_log_id = exp["predictionLogIds"][0]
st.session_state.datapoint_pd = datapoint_pd
certainty = get_fake_certainty()
st.session_state.certainty = certainty
st.session_state.got_explanation = True
st.session_state.predict_button_clicked = False
except Exception as e:
logging.error(e)
st.error(
"Failed to retrieve the prediction or explanation."
+ "Check whether you are using the right model URL and Token. "
+ "Contact Deeploy if the problem persists."
)
# create warning or info to be shown until prediction has been retrieved
if not st.session_state.got_explanation:
st.info(
"Fill in left hand side and click on button to observe a potential fraudulent transaction"
)
# store important vars from result of prediction and explanation call
if st.session_state.got_explanation:
shap_values = st.session_state.shap_values
request_log_id = st.session_state.request_log_id
prediction_log_id = st.session_state.prediction_log_id
datapoint_pd = st.session_state.datapoint_pd
certainty = st.session_state.certainty
datapoint = modify_datapoint(datapoint_pd)
# create two columns to show data input used and explanation
col1, col2 = st.columns(2)
# col1 contains input data table
with col1:
create_data_input_table(datapoint, COL_NAMES)
# col 2 contains model certainty and explanation table of top 5 features
with col2:
st.subheader("AML Model Hit")
st.metric(label="Model Certainty", value=certainty, delta="threshold: 75%")
explainability_texts, sorted_indices = get_explainability_texts(
shap_values, feature_texts
)
weights = get_weights(shap_values, sorted_indices)
explainability_values = get_explainability_values(sorted_indices, datapoint)
create_table(
explainability_texts,
explainability_values,
weights,
"Important Suspicious Factors",
)
st.subheader("")
# add var to session state to discern if user has started an evaluation
if "eval_selected" not in st.session_state:
st.session_state["eval_selected"] = False
# define two columns for agree and disagree button + text area for evaluation input
col3, col4 = st.columns(2)
# col 3 contains yes button
with col3:
# create empty state so that button disappears when st.empty is cleared
eval1 = st.empty()
eval1.button(
"Send to FIU",
key="yes_button",
use_container_width=True,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Send to FIU", "#FFFFFF", "#4C506C")
st.session_state.yes_button_clicked = False
if st.session_state.yes_button:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {"agree": True} # Agree with the prediction
# col 4 contains no button
with col4:
# create empty state so that button disappears when st.empty is cleared
eval2 = st.empty()
eval2.button(
"Not money laundering",
key="no_button",
use_container_width=True,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Not money laundering", "#FFFFFF", "#4C506C")
st.session_state.no_button_clicked = False
if st.session_state.no_button:
st.session_state.no_button_clicked = True
if st.session_state.no_button_clicked:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {
"agree": False, # Disagree with the prediction
"desired_output": {"predictions": [1]},
}
# define process for evaluation
success = False
if st.session_state.eval_selected:
# if agree button clicked ("Send to FIU"), prefill explanation as comment for evaluation
# change evaluation is user decides to fill in own text
if st.session_state.yes_button:
st.session_state.yes_button_clicked = True
yes_button = True
explanation = get_comment_explanation(
certainty, explainability_texts, explainability_values
)
st.session_state.yes_button_text = explanation
comment = st.text_area(
"Reason for evaluation:",
st.session_state.yes_button_text,
key="yes_comment",
on_change=get_input_yes_button,
)
st.session_state.evaluation_input[
"comment"
] = st.session_state.yes_button_text
# if disagree button clicked ("Not money laundering") prefill with text that user
# has to finish as a reason for evaluation
if st.session_state.no_button:
comment = st.text_area(
"Reason for evaluation:",
st.session_state.no_button_text,
key="no_comment",
on_change=get_input_no_button,
)
st.session_state.evaluation_input[
"comment"
] = st.session_state.no_button_text
# create empty state so that button submit disappears when st.empty is cleared
eval3 = st.empty()
eval3.button(
"Submit",
key="submit_button",
use_container_width=True,
on_click=submitted_disabled,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Submit", "#FFFFFF", "#00052D")
# if submit button is clicked, send evaluation to Deeploy
if st.session_state.submit_button:
st.session_state.eval_selected = False
success = send_evaluation(
client,
deployment_id,
request_log_id,
prediction_log_id,
st.session_state.evaluation_input,
)
# if the sending of evaluation was successful, remove buttons and enable Next button
# to be clicked for next prediction and explanation to appear
if success:
st.session_state.eval_selected = False
st.session_state.submitted = True
eval1.empty()
eval2.empty()
eval3.empty()
st.success("Feedback submitted successfully")
st.button("Next", key="next", use_container_width=True, on_click=rerun)
ChangeButtonColour("Next", "#FFFFFF", "#00052D")
|