|
import streamlit.components.v1 as components |
|
from random import randrange, uniform |
|
import pandas as pd |
|
import joblib |
|
import dill |
|
from omnixai.data.tabular import Tabular |
|
|
|
def ChangeButtonColour(widget_label, font_color, background_color='transparent'): |
|
htmlstr = f""" |
|
<script> |
|
var elements = window.parent.document.querySelectorAll('button'); |
|
for (var i = 0; i < elements.length; ++i) {{ |
|
if (elements[i].innerText == '{widget_label}') {{ |
|
elements[i].style.color ='{font_color}'; |
|
elements[i].style.background = '{background_color}' |
|
}} |
|
}} |
|
</script> |
|
""" |
|
components.html(f"{htmlstr}", height=0, width=0) |
|
|
|
|
|
def first_five_posneg_indices(response_body): |
|
values = response_body["explanations"][0]["shap_values"] |
|
|
|
positive_dict = {index: val for index, val in enumerate(values) if val > 0} |
|
negative_dict = {index: val for index, val in enumerate(values) if val < 0} |
|
|
|
|
|
sorted_positive_indices = [index for index, _ in sorted(positive_dict.items(), key=lambda item: abs(item[1]), reverse=True)] |
|
sorted_negative_indices = [index for index, _ in sorted(negative_dict.items(), key=lambda item: abs(item[1]), reverse=True)] |
|
|
|
return [sorted_positive_indices[:5], sorted_negative_indices[:5]] |
|
|
|
def get_texts(posneg_indices, feature_texts): |
|
positive_texts = [feature_texts[x] for x in posneg_indices[0]] |
|
negative_texts = [feature_texts[x] for x in posneg_indices[1]] |
|
return positive_texts, negative_texts |
|
|
|
|
|
def get_input_values(posneg_indices, data_instance): |
|
values = data_instance["instances"][0] |
|
outputs = [] |
|
for lst in posneg_indices: |
|
vals = [] |
|
for idx in lst: |
|
if idx in range(7,12): |
|
val = str(bool(values[idx])).capitalize() |
|
else: |
|
val = values[idx] |
|
vals.append(val) |
|
outputs.append(vals) |
|
return outputs[0], outputs[1] |
|
|
|
response = { |
|
"predictions": [ |
|
True |
|
], |
|
"explanations": [ |
|
{ |
|
"shap_values": [ |
|
-0.020634920634920784, |
|
-0.053968253968253166, |
|
-0.0015873015873012486, |
|
0, |
|
0.04603174603174587, |
|
-0.12063492063492065, |
|
0.8365079365079348, |
|
-0.16349206349206302, |
|
0.12222222222222279, |
|
-0.04444444444444462, |
|
-0.02444444444444462, |
|
0.03603174603174587, |
|
], |
|
"expected_value": 0.4 |
|
} |
|
] |
|
} |
|
|
|
feature_texts = {0: "Day out of 30", 1: "Type of transaction: ", 2: "Amount transferred: ", 3: "Initial balance of sender: ", 4: "New balance of sender: ", |
|
5: "Initial balance of recipient: ", 6: "New balance of recipient: ", 7: "Sender's balance was exactly credited: ", |
|
8: "Receiver's balance was exactly credited: ", 9: "Transaction over 450.000: ", 10: "Frequent receiver of transactions: ", 11: "Receiver is merchant: ", 12: "Sender ID: ", 13: "Receiver ID: "} |
|
|
|
example_input = {"instances":[[1,"PAYMENT",9839.64,170136,160296.36,0,0,1,1,0,0,1,84,2424]]} |
|
|
|
|
|
def get_fake_certainty(): |
|
|
|
fake_certainty = uniform(0.75, 0.99) |
|
formatted_fake_certainty = "{:.2%}".format(fake_certainty) |
|
return formatted_fake_certainty |
|
|
|
|
|
def get_random_suspicious_transaction(): |
|
data = pd.read_pickle("data/preprocessed_data.pkl") |
|
suspicious_data=data[data["isFraud"]==1] |
|
max_n=len(suspicious_data) |
|
random_nr=randrange(max_n) |
|
suspicous_transaction = suspicious_data[random_nr-1:random_nr].drop("isFraud", axis=1) |
|
return suspicous_transaction |
|
|
|
|
|
def get_model_certainty(data_point): |
|
|
|
model = joblib.load('model/model.joblib') |
|
|
|
with open("transformer/transformer.dill", "rb") as f: |
|
transformer = dill.load(f) |
|
|
|
|
|
sample = Tabular(data_point, categorical_columns=[1]) |
|
transformed = transformer.transform(sample) |
|
|
|
|
|
probability = model.predict_proba(transformed) |
|
positive_class_probability = probability[:, 1][0] |
|
formatted_probability = "{:.5%}".format(positive_class_probability) |
|
|
|
return formatted_probability |