|
import streamlit.components.v1 as components |
|
import streamlit as st |
|
from random import randrange, uniform |
|
import pandas as pd |
|
import logging |
|
import numpy as np |
|
|
|
COL_NAMES = ['Time step', |
|
'Transaction type', |
|
'Amount transferred', |
|
'Sender\'s initial balance', |
|
'Sender\'s new balance', |
|
'Recipient\'s initial balance', |
|
'Recipient\'s new balance', |
|
"Sender exactly credited", |
|
"Receiver exactly credited", |
|
'Amount > 450 000', |
|
'Frequent receiver', |
|
'Merchant receiver', |
|
'Sender ID', |
|
'Receiver ID'] |
|
|
|
feature_texts = {0: "Time step: ", 1: "Amount transferred: ", 2: "Initial balance of sender: ", 3: "New balance of sender: ", |
|
4: "Initial balance of recipient: ", 5: "New balance of recipient: ", 6: "Sender's balance was exactly credited: ", |
|
7: "Receiver's balance was exactly credited: ", 8: "Transaction over 450.000: ", 9: "Frequent receiver of transactions: ", 10: "Receiver is merchant: ", 11: "Sender ID: ", 12: "Receiver ID: ", |
|
13: "Transaction type is Cash out", 14: "Transaction type is Transfer", 15: "Transaction type is Payment", 16: "Transaction type is Cash in", 17: "Transaction type is Debit"} |
|
|
|
CATEGORIES = np.array(['CASH_OUT', 'TRANSFER', 'PAYMENT', 'CASH_IN', 'DEBIT']) |
|
|
|
def transformation(input, categories): |
|
new_x = input |
|
cat = np.array(input[1]) |
|
del new_x[1] |
|
result_array = np.zeros(5, dtype=int) |
|
match_index = np.where(categories == cat)[0] |
|
result_array[match_index] = 1 |
|
new_x.extend(result_array.tolist()) |
|
python_objects = [np_type.item() if isinstance(np_type, np.generic) else np_type for np_type in new_x] |
|
return python_objects |
|
|
|
def get_request_body(datapoint): |
|
data = datapoint.iloc[0].tolist() |
|
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data] |
|
request_body = {'instances': [instances]} |
|
return request_body |
|
|
|
|
|
def get_explainability_texts(shap_values, feature_texts): |
|
|
|
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0} |
|
|
|
sorted_positive_indices = [index for index, _ in sorted(positive_dict.items(), key=lambda item: abs(item[1]), reverse=True)] |
|
positive_texts = [feature_texts[x] for x in sorted_positive_indices] |
|
positive_texts = positive_texts[2:] |
|
sorted_positive_indices = sorted_positive_indices[2:] |
|
if len(positive_texts) > 5: |
|
positive_texts = positive_texts[:5] |
|
sorted_positive_indices = sorted_positive_indices[:5] |
|
return positive_texts, sorted_positive_indices |
|
|
|
|
|
def get_explainability_values(pos_indices, datapoint): |
|
data = datapoint.iloc[0].tolist() |
|
rounded_data = [round(value, 2) if isinstance(value, float) else value for value in data] |
|
transformed_data = transformation(input=rounded_data, categories=CATEGORIES) |
|
vals = [] |
|
for idx in pos_indices: |
|
if idx in range(6,11) or idx in range(13,18): |
|
val = str(bool(transformed_data[idx])).capitalize() |
|
else: |
|
val = transformed_data[idx] |
|
vals.append(val) |
|
return vals |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_weights(shap_values, sorted_indices, target_sum=0.95): |
|
weights = [shap_values[x] for x in sorted_indices] |
|
total_sum = sum(weights) |
|
|
|
scaled_values = [val * (target_sum / total_sum) for val in weights] |
|
return scaled_values |
|
|
|
def get_fake_certainty(): |
|
|
|
fake_certainty = uniform(0.75, 0.99) |
|
formatted_fake_certainty = "{:.2%}".format(fake_certainty) |
|
return formatted_fake_certainty |
|
|
|
|
|
def get_random_suspicious_transaction(data): |
|
suspicious_data=data[data["isFraud"]==1] |
|
max_n=len(suspicious_data) |
|
random_nr=randrange(max_n) |
|
suspicous_transaction = suspicious_data[random_nr-1:random_nr].drop("isFraud", axis=1) |
|
return suspicous_transaction |
|
|
|
|
|
def send_evaluation(client, deployment_id, request_log_id, prediction_log_id, evaluation_input): |
|
"""Send evaluation to Deeploy.""" |
|
try: |
|
with st.spinner("Submitting response..."): |
|
|
|
client.evaluate(deployment_id, request_log_id, prediction_log_id, evaluation_input) |
|
return True |
|
except Exception as e: |
|
logging.error(e) |
|
st.error( |
|
"Failed to submit feedback." |
|
+ "Check whether you are using the right model URL and Token. " |
|
+ "Contact Deeploy if the problem persists." |
|
) |
|
st.write(f"Error message: {e}") |
|
|
|
|
|
def get_model_url(): |
|
"""Get model url and retrieve workspace id and deployment id from it""" |
|
model_url = st.text_area( |
|
"Model URL (default is the demo deployment)", |
|
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/ac56dbdf-ba04-462f-aa70-5a0d18698e42/", |
|
height=125, |
|
) |
|
elems = model_url.split("/") |
|
try: |
|
workspace_id = elems[4] |
|
deployment_id = elems[6] |
|
except IndexError: |
|
workspace_id = "" |
|
deployment_id = "" |
|
return model_url, workspace_id, deployment_id |
|
|
|
def get_comment_explanation(certainty, explainability_texts, explainability_values): |
|
cleaned = [x.replace(':', '') for x in explainability_texts] |
|
fi = [f'{cleaned[i]} is {x}' for i, x in enumerate(explainability_values)] |
|
fi.insert(0, 'Important suspicious features: ') |
|
result = '\n'.join(fi) |
|
comment = f"Model certainty is {certainty}" + '\n''\n' + result |
|
return comment |
|
|
|
def create_data_input_table(datapoint, col_names): |
|
st.subheader("Transaction details") |
|
data = datapoint.iloc[0].tolist() |
|
data[7:12] = [bool(value) for value in data[7:12]] |
|
rounded_list = [round(value, 2) if isinstance(value, float) else value for value in data] |
|
df = pd.DataFrame({"Feature name": col_names, "Value": rounded_list }) |
|
st.dataframe(df, hide_index=True, use_container_width=True, height=35*len(df)+38) |
|
|
|
|
|
def create_table(texts, values, weights, title): |
|
df = pd.DataFrame({"Feature Explanation": texts, 'Value': values, 'Weight': weights}) |
|
st.markdown(f'#### {title}') |
|
st.dataframe(df, hide_index=True, use_container_width=True, column_config={ |
|
'Weight': st.column_config.ProgressColumn( |
|
'Weight', |
|
width='small', |
|
format="%.2f", |
|
min_value=0, |
|
max_value=1 |
|
) |
|
}) |
|
|
|
|
|
def ChangeButtonColour(widget_label, font_color, background_color='transparent'): |
|
htmlstr = f""" |
|
<script> |
|
var elements = window.parent.document.querySelectorAll('button'); |
|
for (var i = 0; i < elements.length; ++i) {{ |
|
if (elements[i].innerText == '{widget_label}') {{ |
|
elements[i].style.color ='{font_color}'; |
|
elements[i].style.background = '{background_color}' |
|
}} |
|
}} |
|
</script> |
|
""" |
|
components.html(f"{htmlstr}", height=0, width=0) |