AML / utils.py
adollbo's picture
added weights, converted data to arrow friendly format
3c5e633
raw
history blame
7.52 kB
import streamlit.components.v1 as components
import streamlit as st
from random import randrange, uniform
import pandas as pd
import logging
import numpy as np
COL_NAMES = ['Time step',
'Transaction type',
'Amount transferred',
'Sender\'s initial balance',
'Sender\'s new balance',
'Recipient\'s initial balance',
'Recipient\'s new balance',
"Sender exactly credited",
"Receiver exactly credited",
'Amount > 450 000',
'Frequent receiver',
'Merchant receiver',
'Sender ID',
'Receiver ID']
feature_texts = {0: "Time step: ", 1: "Amount transferred: ", 2: "Initial balance of sender: ", 3: "New balance of sender: ",
4: "Initial balance of recipient: ", 5: "New balance of recipient: ", 6: "Sender's balance was exactly credited: ",
7: "Receiver's balance was exactly credited: ", 8: "Transaction over 450.000: ", 9: "Frequent receiver of transactions: ", 10: "Receiver is merchant: ", 11: "Sender ID: ", 12: "Receiver ID: ",
13: "Transaction type is Cash out", 14: "Transaction type is Transfer", 15: "Transaction type is Payment", 16: "Transaction type is Cash in", 17: "Transaction type is Debit"}
CATEGORIES = np.array(['CASH_OUT', 'TRANSFER', 'PAYMENT', 'CASH_IN', 'DEBIT'])
def transformation(input, categories):
new_x = input
cat = np.array(input[1])
del new_x[1]
result_array = np.zeros(5, dtype=int)
match_index = np.where(categories == cat)[0]
result_array[match_index] = 1
new_x.extend(result_array.tolist())
python_objects = [np_type.item() if isinstance(np_type, np.generic) else np_type for np_type in new_x]
return python_objects
def get_request_body(datapoint):
data = datapoint.iloc[0].tolist()
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data]
request_body = {'instances': [instances]}
return request_body
def get_explainability_texts(shap_values, feature_texts):
# Separate positive and negative values, keep indice as corresponds to key
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0}
# Sort dictionaries based on the magnitude of values
sorted_positive_indices = [index for index, _ in sorted(positive_dict.items(), key=lambda item: abs(item[1]), reverse=True)]
positive_texts = [feature_texts[x] for x in sorted_positive_indices]
positive_texts = positive_texts[2:]
sorted_positive_indices = sorted_positive_indices[2:]
if len(positive_texts) > 5:
positive_texts = positive_texts[:5]
sorted_positive_indices = sorted_positive_indices[:5]
return positive_texts, sorted_positive_indices
def get_explainability_values(pos_indices, datapoint):
data = datapoint.iloc[0].tolist()
rounded_data = [round(value, 2) if isinstance(value, float) else value for value in data]
transformed_data = transformation(input=rounded_data, categories=CATEGORIES)
vals = []
for idx in pos_indices:
if idx in range(6,11) or idx in range(13,18):
val = str(bool(transformed_data[idx])).capitalize()
else:
val = transformed_data[idx]
vals.append(val)
return vals
# def get_weights(shap_values, sorted_indices):
# weights = [shap_values[x] for x in sorted_indices]
# total_sum = sum(weights)
# scaled_values = [val/total_sum for val in weights]
# return scaled_values
def get_weights(shap_values, sorted_indices, target_sum=0.95):
weights = [shap_values[x] for x in sorted_indices]
total_sum = sum(weights)
# Scale to the target sum (0.95 in this case)
scaled_values = [val * (target_sum / total_sum) for val in weights]
return scaled_values
def get_fake_certainty():
# Generate a random certainty between 75% and 99%
fake_certainty = uniform(0.75, 0.99)
formatted_fake_certainty = "{:.2%}".format(fake_certainty)
return formatted_fake_certainty
def get_random_suspicious_transaction(data):
suspicious_data=data[data["isFraud"]==1]
max_n=len(suspicious_data)
random_nr=randrange(max_n)
suspicous_transaction = suspicious_data[random_nr-1:random_nr].drop("isFraud", axis=1)
return suspicous_transaction
def send_evaluation(client, deployment_id, request_log_id, prediction_log_id, evaluation_input):
"""Send evaluation to Deeploy."""
try:
with st.spinner("Submitting response..."):
# Call the explain endpoint as it also includes the prediction
client.evaluate(deployment_id, request_log_id, prediction_log_id, evaluation_input)
return True
except Exception as e:
logging.error(e)
st.error(
"Failed to submit feedback."
+ "Check whether you are using the right model URL and Token. "
+ "Contact Deeploy if the problem persists."
)
st.write(f"Error message: {e}")
def get_model_url():
"""Get model url and retrieve workspace id and deployment id from it"""
model_url = st.text_area(
"Model URL (default is the demo deployment)",
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/ac56dbdf-ba04-462f-aa70-5a0d18698e42/",
height=125,
)
elems = model_url.split("/")
try:
workspace_id = elems[4]
deployment_id = elems[6]
except IndexError:
workspace_id = ""
deployment_id = ""
return model_url, workspace_id, deployment_id
def get_comment_explanation(certainty, explainability_texts, explainability_values):
cleaned = [x.replace(':', '') for x in explainability_texts]
fi = [f'{cleaned[i]} is {x}' for i, x in enumerate(explainability_values)]
fi.insert(0, 'Important suspicious features: ')
result = '\n'.join(fi)
comment = f"Model certainty is {certainty}" + '\n''\n' + result
return comment
def create_data_input_table(datapoint, col_names):
st.subheader("Transaction details")
data = datapoint.iloc[0].tolist()
data[7:12] = [bool(value) for value in data[7:12]]
rounded_list = [round(value, 2) if isinstance(value, float) else value for value in data]
df = pd.DataFrame({"Feature name": col_names, "Value": rounded_list })
st.dataframe(df, hide_index=True, use_container_width=True, height=35*len(df)+38) #width=450
# Create a function to generate a table
def create_table(texts, values, weights, title):
df = pd.DataFrame({"Feature Explanation": texts, 'Value': values, 'Weight': weights})
st.markdown(f'#### {title}') # Markdown for styling
st.dataframe(df, hide_index=True, use_container_width=True, column_config={
'Weight': st.column_config.ProgressColumn(
'Weight',
width='small',
format="%.2f",
min_value=0,
max_value=1
)
}) #width=450 # Display a simple table
def ChangeButtonColour(widget_label, font_color, background_color='transparent'):
htmlstr = f"""
<script>
var elements = window.parent.document.querySelectorAll('button');
for (var i = 0; i < elements.length; ++i) {{
if (elements[i].innerText == '{widget_label}') {{
elements[i].style.color ='{font_color}';
elements[i].style.background = '{background_color}'
}}
}}
</script>
"""
components.html(f"{htmlstr}", height=0, width=0)