AML / app.py
deeploy-adubowski's picture
Rename Deeploy Model Token to Deeploy API token
93f0de5
raw
history blame
11.5 kB
import streamlit as st
import pandas as pd
import logging
from deeploy import Client
from utils import (
get_request_body,
get_fake_certainty,
get_model_url,
get_random_suspicious_transaction,
)
from utils import (
get_explainability_texts,
get_explainability_values,
send_evaluation,
get_comment_explanation,
)
from utils import COL_NAMES, feature_texts
from utils import (
create_data_input_table,
create_table,
ChangeButtonColour,
get_weights,
modify_datapoint,
)
logging.basicConfig(level=logging.INFO)
st.set_page_config(layout="wide")
st.title("Smart AML:tm:")
st.divider()
# Import data
data = pd.read_pickle("data/preprocessed_data.pkl")
# instantiate important vars in session state
if "predict_button_clicked" not in st.session_state:
st.session_state.predict_button_clicked = False
if "submitted_disabled" not in st.session_state:
st.session_state.submitted_disabled = False
if "disabled" not in st.session_state:
st.session_state.disabled = False
if "no_button_text" not in st.session_state:
st.session_state.no_button_text = (
"I don't think this transaction is money laundering because..."
)
if "yes_button_text" not in st.session_state:
st.session_state.yes_button_text = ""
if "yes_button_clicked" not in st.session_state:
st.session_state.yes_button_clicked = False
# define functions to be run when buttons are clicked
# func to be run when input changes in no button text area
def get_input_no_button():
st.session_state.no_button_text = comment.replace(
st.session_state.no_button_text, st.session_state.no_comment
)
st.session_state.evaluation_input["explanation"] = st.session_state.no_button_text
# func to be run when input changes in yes button text area
def get_input_yes_button():
st.session_state.yes_button_text = comment.replace(
st.session_state.yes_button_text, st.session_state.yes_comment
)
st.session_state.evaluation_input["explanation"] = st.session_state.yes_button_text
# func to disable click again for button "Get suspicious transactions"
def disabled():
st.session_state.disabled = True
# func for Next button to rerun and get new prediction
def rerun():
st.session_state.predict_button_clicked = True
st.session_state.submitted_disabled = False
st.session_state.no_button_text = (
"I don't think this transaction is money laundering because..."
)
# func for submit button to disable resubmit
def submitted_disabled():
st.session_state.submitted_disabled = True
# color specs for sidebar
st.markdown(
"""
<style>
[data-testid=stSidebar] {
background-color: #E0E0E0; ##E5E6EA
}
</style>
""",
unsafe_allow_html=True,
)
with st.sidebar:
# Add deeploy logo
st.image("deeploy_logo.png", width=270)
# Ask for model URL and token
host = st.text_input("Host (changing is optional)", "app.deeploy.ml")
model_url, workspace_id, deployment_id = get_model_url()
deployment_token = st.text_input("Deeploy API token", "my-secret-token")
if deployment_token == "my-secret-token":
# show warning until token has been filled in
st.warning("Please enter Deeploy API token.")
else:
st.button(
"Get suspicious transaction",
key="predict_button",
help="Click to get a suspicious transaction",
use_container_width=True,
on_click=disabled,
disabled=st.session_state.disabled,
)
ChangeButtonColour("Get suspicious transaction", "#FFFFFF", "#00052D")
# define client options and instantiate client
client_options = {
"host": host,
"deployment_token": deployment_token,
"workspace_id": workspace_id,
}
client = Client(**client_options)
# instantiate session state vars to define whether predict button has been clicked
# and explanation was retrieved
if "predict_button" not in st.session_state:
st.session_state.predict_button = False
if st.session_state.predict_button:
st.session_state.predict_button_clicked = True
if "got_explanation" not in st.session_state:
st.session_state.got_explanation = False
# make prediction and explanation calls and store important vars
if st.session_state.predict_button_clicked:
try:
with st.spinner("Loading..."):
datapoint_pd = get_random_suspicious_transaction(data)
request_body = get_request_body(datapoint_pd)
# Call the explain endpoint as it also includes the prediction
exp = client.explain(request_body=request_body, deployment_id=deployment_id)
st.session_state.shap_values = exp["explanations"][0]["shap_values"]
st.session_state.request_log_id = exp["requestLogId"]
st.session_state.prediction_log_id = exp["predictionLogIds"][0]
st.session_state.datapoint_pd = datapoint_pd
certainty = get_fake_certainty()
st.session_state.certainty = certainty
st.session_state.got_explanation = True
st.session_state.predict_button_clicked = False
except Exception as e:
logging.error(e)
st.error(
"Failed to retrieve the prediction or explanation."
+ "Check whether you are using the right model URL and Token. "
+ "Contact Deeploy if the problem persists."
)
# create warning or info to be shown until prediction has been retrieved
if not st.session_state.got_explanation:
st.info(
"Fill in left hand side and click on button to observe a potential fraudulent transaction"
)
# store important vars from result of prediction and explanation call
if st.session_state.got_explanation:
shap_values = st.session_state.shap_values
request_log_id = st.session_state.request_log_id
prediction_log_id = st.session_state.prediction_log_id
datapoint_pd = st.session_state.datapoint_pd
certainty = st.session_state.certainty
datapoint = modify_datapoint(datapoint_pd)
# create two columns to show data input used and explanation
col1, col2 = st.columns(2)
# col1 contains input data table
with col1:
create_data_input_table(datapoint, COL_NAMES)
# col 2 contains model certainty and explanation table of top 5 features
with col2:
st.subheader("AML Model Hit")
st.metric(label="Model Certainty", value=certainty, delta="threshold: 75%")
explainability_texts, sorted_indices = get_explainability_texts(
shap_values, feature_texts
)
weights = get_weights(shap_values, sorted_indices)
explainability_values = get_explainability_values(sorted_indices, datapoint)
create_table(
explainability_texts,
explainability_values,
weights,
"Important Suspicious Factors",
)
st.subheader("")
# add var to session state to discern if user has started an evaluation
if "eval_selected" not in st.session_state:
st.session_state["eval_selected"] = False
# define two columns for agree and disagree button + text area for evaluation input
col3, col4 = st.columns(2)
# col 3 contains yes button
with col3:
# create empty state so that button disappears when st.empty is cleared
eval1 = st.empty()
eval1.button(
"Send to FIU",
key="yes_button",
use_container_width=True,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Send to FIU", "#FFFFFF", "#4C506C")
st.session_state.yes_button_clicked = False
if st.session_state.yes_button:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {"result": 0} # Agree with the prediction
# col 4 contains no button
with col4:
# create empty state so that button disappears when st.empty is cleared
eval2 = st.empty()
eval2.button(
"Not money laundering",
key="no_button",
use_container_width=True,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Not money laundering", "#FFFFFF", "#4C506C")
st.session_state.no_button_clicked = False
if st.session_state.no_button:
st.session_state.no_button_clicked = True
if st.session_state.no_button_clicked:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {
"result": 1, # Disagree with the prediction
"value": {"predictions": [1]},
}
# define process for evaluation
success = False
if st.session_state.eval_selected:
# if agree button clicked ("Send to FIU"), prefill explanation as comment for evaluation
# change evaluation is user decides to fill in own text
if st.session_state.yes_button:
st.session_state.yes_button_clicked = True
yes_button = True
explanation = get_comment_explanation(
certainty, explainability_texts, explainability_values
)
st.session_state.yes_button_text = explanation
comment = st.text_area(
"Reason for evaluation:",
st.session_state.yes_button_text,
key="yes_comment",
on_change=get_input_yes_button,
)
st.session_state.evaluation_input[
"explanation"
] = st.session_state.yes_button_text
# if disagree button clicked ("Not money laundering") prefill with text that user
# has to finish as a reason for evaluation
if st.session_state.no_button:
comment = st.text_area(
"Reason for evaluation:",
st.session_state.no_button_text,
key="no_comment",
on_change=get_input_no_button,
)
st.session_state.evaluation_input[
"explanation"
] = st.session_state.no_button_text
# create empty state so that button submit disappears when st.empty is cleared
eval3 = st.empty()
eval3.button(
"Submit",
key="submit_button",
use_container_width=True,
on_click=submitted_disabled,
disabled=st.session_state.submitted_disabled,
)
ChangeButtonColour("Submit", "#FFFFFF", "#00052D")
# if submit button is clicked, send evaluation to Deeploy
if st.session_state.submit_button:
st.session_state.eval_selected = False
success = send_evaluation(
client,
deployment_id,
request_log_id,
prediction_log_id,
st.session_state.evaluation_input,
)
# if the sending of evaluation was successful, remove buttons and enable Next button
# to be clicked for next prediction and explanation to appear
if success:
st.session_state.eval_selected = False
st.session_state.submitted = True
eval1.empty()
eval2.empty()
eval3.empty()
st.warning("Feedback submitted successfully")
st.button("Next", key="next", use_container_width=True, on_click=rerun)
ChangeButtonColour("Next", "#FFFFFF", "#00052D")