|
import streamlit.components.v1 as components |
|
import streamlit as st |
|
from random import randrange, uniform |
|
import pandas as pd |
|
import logging |
|
import numpy as np |
|
import random |
|
from datetime import datetime, timedelta |
|
from babel.numbers import format_currency |
|
|
|
|
|
COL_NAMES = [ |
|
"Transaction date", |
|
"Transaction type", |
|
"Amount transferred", |
|
"Sender's initial balance", |
|
"Sender's new balance", |
|
"Recipient's initial balance", |
|
"Recipient's new balance", |
|
"Sender exactly credited", |
|
"Receiver exactly credited", |
|
"Large amount", |
|
"Frequent receiver", |
|
"Merchant receiver", |
|
"Sender ID", |
|
"Receiver ID", |
|
] |
|
|
|
|
|
feature_texts = { |
|
0: "Date of transaction", |
|
1: "Amount transferred", |
|
2: "Initial balance of sender", |
|
3: "New balance of sender", |
|
4: "Initial balance of recipient", |
|
5: "New balance of recipient", |
|
6: "Sender's balance was exactly credited", |
|
7: "Receiver's balance was exactly credited", |
|
8: "Large amount", |
|
9: "Frequent receiver of transactions", |
|
10: "Receiver is merchant", |
|
11: "Sender ID", |
|
12: "Receiver ID", |
|
13: "Transaction type is Cash out", |
|
14: "Transaction type is Transfer", |
|
15: "Transaction type is Payment", |
|
16: "Transaction type is Cash in", |
|
17: "Transaction type is Debit", |
|
} |
|
|
|
|
|
CATEGORIES = np.array(["CASH_OUT", "TRANSFER", "PAYMENT", "CASH_IN", "DEBIT"]) |
|
|
|
|
|
|
|
def transformation(input, categories): |
|
new_x = input |
|
cat = np.array(input[1]) |
|
del new_x[1] |
|
result_array = np.zeros(5, dtype=int) |
|
match_index = np.where(categories == cat)[0] |
|
result_array[match_index] = 1 |
|
new_x.extend(result_array.tolist()) |
|
python_objects = [ |
|
np_type.item() if isinstance(np_type, np.generic) else np_type |
|
for np_type in new_x |
|
] |
|
return python_objects |
|
|
|
|
|
|
|
def get_request_body(datapoint): |
|
data = datapoint.iloc[0].tolist() |
|
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data] |
|
request_body = {"instances": [instances]} |
|
return request_body |
|
|
|
|
|
|
|
def get_explainability_texts(shap_values, feature_texts): |
|
|
|
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0} |
|
|
|
sorted_positive_indices = [ |
|
index |
|
for index, _ in sorted( |
|
positive_dict.items(), key=lambda item: abs(item[1]), reverse=True |
|
) |
|
] |
|
positive_texts = [feature_texts[x] for x in sorted_positive_indices] |
|
positive_texts = positive_texts[2:] |
|
sorted_positive_indices = sorted_positive_indices[2:] |
|
if len(positive_texts) > 5: |
|
positive_texts = positive_texts[:5] |
|
sorted_positive_indices = sorted_positive_indices[:5] |
|
return positive_texts, sorted_positive_indices |
|
|
|
|
|
|
|
|
|
def random_past_date_from_last_year(): |
|
one_year_ago = datetime.now() - timedelta(days=365) |
|
random_days = random.randint(0, (datetime.now() - one_year_ago).days) |
|
random_date = one_year_ago + timedelta(days=random_days) |
|
return random_date.strftime("%Y-%m-%d") |
|
|
|
|
|
|
|
def get_explainability_values(pos_indices, data): |
|
rounded_data = [ |
|
round(value, 2) if isinstance(value, float) else value for value in data |
|
] |
|
transformed_data = transformation(input=rounded_data, categories=CATEGORIES) |
|
vals = [] |
|
for idx in pos_indices: |
|
if idx in range(6, 11) or idx in range(13, 18): |
|
val = str(bool(transformed_data[idx])).capitalize() |
|
else: |
|
val = transformed_data[idx] |
|
vals.append(val) |
|
return vals |
|
|
|
|
|
|
|
def modify_datapoint( |
|
datapoint, |
|
): |
|
data = datapoint.iloc[0].tolist() |
|
data[0] = random_past_date_from_last_year() |
|
modified_amounts = data.copy() |
|
if any(val > 12000 for val in data[2:7]): |
|
modified_amounts[2:7] = [ |
|
value / 100 if value != 0 else 0 for value in data[2:7] |
|
] |
|
if any(val > 120000 for val in modified_amounts[2:7]): |
|
new_list = [value / 10 if value != 0 else 0 for value in modified_amounts[2:7]] |
|
modified_amounts[2:7] = new_list |
|
rounded_data = [ |
|
round(value, 2) if isinstance(value, float) else value |
|
for value in modified_amounts |
|
] |
|
rounded_data[2:7] = [ |
|
format_currency(value, "EUR", locale="en_GB") for value in rounded_data[2:7] |
|
] |
|
return rounded_data |
|
|
|
|
|
|
|
def get_weights(shap_values, sorted_indices, target_sum=0.95): |
|
weights = [shap_values[x] for x in sorted_indices] |
|
total_sum = sum(weights) |
|
|
|
scaled_values = [val * (target_sum / total_sum) for val in weights] |
|
return scaled_values |
|
|
|
|
|
|
|
def get_fake_certainty(): |
|
|
|
fake_certainty = uniform(0.75, 0.99) |
|
formatted_fake_certainty = "{:.2%}".format(fake_certainty) |
|
return formatted_fake_certainty |
|
|
|
|
|
|
|
def get_random_suspicious_transaction(data): |
|
suspicious_data = data[data["isFraud"] == 1] |
|
max_n = len(suspicious_data) |
|
random_nr = randrange(max_n) |
|
suspicous_transaction = suspicious_data[random_nr - 1 : random_nr].drop( |
|
"isFraud", axis=1 |
|
) |
|
return suspicous_transaction |
|
|
|
|
|
|
|
def send_evaluation( |
|
client, deployment_id, request_log_id, prediction_log_id, evaluation_input |
|
): |
|
"""Send evaluation to Deeploy.""" |
|
try: |
|
with st.spinner("Submitting response..."): |
|
|
|
client.evaluate( |
|
deployment_id, request_log_id, prediction_log_id, evaluation_input |
|
) |
|
return True |
|
except Exception as e: |
|
logging.error(e) |
|
st.error( |
|
"Failed to submit feedback." |
|
+ "Check whether you are using the right model URL and Token. " |
|
+ "Contact Deeploy if the problem persists." |
|
) |
|
st.write(f"Error message: {e}") |
|
|
|
|
|
|
|
def get_model_url(): |
|
"""Get model url and retrieve workspace id and deployment id from it""" |
|
model_url = st.text_area( |
|
"Model URL (default is the demo deployment)", |
|
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/ac56dbdf-ba04-462f-aa70-5a0d18698e42/", |
|
height=125, |
|
) |
|
elems = model_url.split("/") |
|
try: |
|
workspace_id = elems[4] |
|
deployment_id = elems[6] |
|
except IndexError: |
|
workspace_id = "" |
|
deployment_id = "" |
|
return model_url, workspace_id, deployment_id |
|
|
|
|
|
|
|
def get_comment_explanation(certainty, explainability_texts, explainability_values): |
|
cleaned = [x.replace(":", "") for x in explainability_texts] |
|
fi = [f"{cleaned[i]} is {x}" for i, x in enumerate(explainability_values)] |
|
fi.insert(0, "Important suspicious features: ") |
|
result = "\n".join(fi) |
|
comment = f"Model certainty is {certainty}" + "\n" "\n" + result |
|
return comment |
|
|
|
|
|
|
|
def create_data_input_table(data, col_names): |
|
st.subheader("Transaction details") |
|
data[7:12] = [bool(value) for value in data[7:12]] |
|
rounded_list = [ |
|
round(value, 2) if isinstance(value, float) else value for value in data |
|
] |
|
df = pd.DataFrame({"Feature name": col_names, "Value": rounded_list}) |
|
st.dataframe( |
|
df, hide_index=True, width=475, height=35 * len(df) + 38 |
|
) |
|
|
|
|
|
|
|
def create_table(texts, values, weights, title): |
|
df = pd.DataFrame( |
|
{"Feature Explanation": texts, "Value": values, "Weight": weights} |
|
) |
|
st.markdown(f"#### {title}") |
|
st.dataframe( |
|
df, |
|
hide_index=True, |
|
width=475, |
|
column_config={ |
|
"Weight": st.column_config.ProgressColumn( |
|
"Weight", width="small", format="%.2f", min_value=0, max_value=1 |
|
) |
|
}, |
|
) |
|
|
|
|
|
|
|
def ChangeButtonColour(widget_label, font_color, background_color="transparent"): |
|
htmlstr = f""" |
|
<script> |
|
var elements = window.parent.document.querySelectorAll('button'); |
|
for (var i = 0; i < elements.length; ++i) {{ |
|
if (elements[i].innerText == '{widget_label}') {{ |
|
elements[i].style.color ='{font_color}'; |
|
elements[i].style.background = '{background_color}' |
|
}} |
|
}} |
|
</script> |
|
""" |
|
components.html(f"{htmlstr}", height=0, width=0) |
|
|