added main data manipulation functions
Browse files
utils.py
CHANGED
@@ -1,88 +1,76 @@
|
|
1 |
import streamlit.components.v1 as components
|
|
|
2 |
from random import randrange, uniform
|
3 |
import pandas as pd
|
4 |
import joblib
|
5 |
import dill
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Separate positive and negative values, keep indice as corresponds to key
|
26 |
-
positive_dict = {index: val for index, val in enumerate(
|
27 |
-
negative_dict = {index: val for index, val in enumerate(values) if val < 0}
|
28 |
-
|
29 |
# Sort dictionaries based on the magnitude of values
|
30 |
sorted_positive_indices = [index for index, _ in sorted(positive_dict.items(), key=lambda item: abs(item[1]), reverse=True)]
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
vals.append(val)
|
52 |
-
outputs.append(vals)
|
53 |
-
return outputs[0], outputs[1]
|
54 |
-
|
55 |
-
response = {
|
56 |
-
"predictions": [
|
57 |
-
True
|
58 |
-
],
|
59 |
-
"explanations": [
|
60 |
-
{
|
61 |
-
"shap_values": [
|
62 |
-
-0.020634920634920784,
|
63 |
-
-0.053968253968253166,
|
64 |
-
-0.0015873015873012486,
|
65 |
-
0,
|
66 |
-
0.04603174603174587,
|
67 |
-
-0.12063492063492065,
|
68 |
-
0.8365079365079348,
|
69 |
-
-0.16349206349206302,
|
70 |
-
0.12222222222222279,
|
71 |
-
-0.04444444444444462,
|
72 |
-
-0.02444444444444462,
|
73 |
-
0.03603174603174587,
|
74 |
-
],
|
75 |
-
"expected_value": 0.4
|
76 |
-
}
|
77 |
-
]
|
78 |
-
}
|
79 |
-
|
80 |
-
feature_texts = {0: "Day out of 30", 1: "Type of transaction: ", 2: "Amount transferred: ", 3: "Initial balance of sender: ", 4: "New balance of sender: ",
|
81 |
-
5: "Initial balance of recipient: ", 6: "New balance of recipient: ", 7: "Sender's balance was exactly credited: ",
|
82 |
-
8: "Receiver's balance was exactly credited: ", 9: "Transaction over 450.000: ", 10: "Frequent receiver of transactions: ", 11: "Receiver is merchant: ", 12: "Sender ID: ", 13: "Receiver ID: "}
|
83 |
-
|
84 |
-
example_input = {"instances":[[1,"PAYMENT",9839.64,170136,160296.36,0,0,1,1,0,0,1,84,2424]]}
|
85 |
-
|
86 |
|
87 |
def get_fake_certainty():
|
88 |
# Generate a random certainty between 75% and 99%
|
@@ -91,8 +79,7 @@ def get_fake_certainty():
|
|
91 |
return formatted_fake_certainty
|
92 |
|
93 |
|
94 |
-
def get_random_suspicious_transaction():
|
95 |
-
data = pd.read_pickle("data/preprocessed_data.pkl")
|
96 |
suspicious_data=data[data["isFraud"]==1]
|
97 |
max_n=len(suspicious_data)
|
98 |
random_nr=randrange(max_n)
|
@@ -100,20 +87,36 @@ def get_random_suspicious_transaction():
|
|
100 |
return suspicous_transaction
|
101 |
|
102 |
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit.components.v1 as components
|
2 |
+
import streamlit as st
|
3 |
from random import randrange, uniform
|
4 |
import pandas as pd
|
5 |
import joblib
|
6 |
import dill
|
7 |
+
import logging
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
COL_NAMES = ['Time step',
|
11 |
+
'Transaction type',
|
12 |
+
'Amount transferred',
|
13 |
+
'Sender\'s initial balance',
|
14 |
+
'Sender\'s new balance',
|
15 |
+
'Recipient\'s initial balance',
|
16 |
+
'Recipient\'s new balance',
|
17 |
+
"Sender exactly credited",
|
18 |
+
"Receiver exactly credited",
|
19 |
+
'Amount > 450 000',
|
20 |
+
'Frequent receiver',
|
21 |
+
'Merchant receiver',
|
22 |
+
'Sender ID',
|
23 |
+
'Receiver ID']
|
24 |
+
|
25 |
+
feature_texts = {0: "Time step: ", 1: "Amount transferred: ", 2: "Initial balance of sender: ", 3: "New balance of sender: ",
|
26 |
+
4: "Initial balance of recipient: ", 5: "New balance of recipient: ", 6: "Sender's balance was exactly credited: ",
|
27 |
+
7: "Receiver's balance was exactly credited: ", 8: "Transaction over 450.000: ", 9: "Frequent receiver of transactions: ", 10: "Receiver is merchant: ", 11: "Sender ID: ", 12: "Receiver ID: ",
|
28 |
+
13: "Transaction type is Cash out", 14: "Transaction type is Transfer", 15: "Transaction type is Payment", 16: "Transaction type is Cash in", 17: "Transaction type is Debit"}
|
29 |
+
|
30 |
+
CATEGORIES = np.array(['CASH_OUT', 'TRANSFER', 'PAYMENT', 'CASH_IN', 'DEBIT'])
|
31 |
+
|
32 |
+
def transformation(input, categories):
|
33 |
+
new_x = input
|
34 |
+
cat = np.array(input[1])
|
35 |
+
del new_x[1]
|
36 |
+
result_array = np.zeros(5, dtype=int)
|
37 |
+
match_index = np.where(categories == cat)[0]
|
38 |
+
result_array[match_index] = 1
|
39 |
+
new_x.extend(result_array.tolist())
|
40 |
+
return new_x
|
41 |
+
|
42 |
+
def get_request_body(datapoint):
|
43 |
+
data = datapoint.iloc[0].tolist()
|
44 |
+
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data]
|
45 |
+
request_body = {'instances': [instances]}
|
46 |
+
return request_body
|
47 |
+
|
48 |
+
|
49 |
+
def get_explainability_texts(shap_values, feature_texts):
|
50 |
# Separate positive and negative values, keep indice as corresponds to key
|
51 |
+
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0}
|
|
|
|
|
52 |
# Sort dictionaries based on the magnitude of values
|
53 |
sorted_positive_indices = [index for index, _ in sorted(positive_dict.items(), key=lambda item: abs(item[1]), reverse=True)]
|
54 |
+
positive_texts = [feature_texts[x] for x in sorted_positive_indices]
|
55 |
+
if len(positive_texts) > 8:
|
56 |
+
positive_texts = positive_texts[:8]
|
57 |
+
return positive_texts, sorted_positive_indices
|
58 |
+
|
59 |
+
|
60 |
+
def get_explainability_values(pos_indices, datapoint):
|
61 |
+
data = datapoint.iloc[0].tolist()
|
62 |
+
transformed_data = transformation(input=data, categories=CATEGORIES)
|
63 |
+
print(transformed_data)
|
64 |
+
vals = []
|
65 |
+
for idx in pos_indices:
|
66 |
+
if idx in range(7,11) or idx in range(13,18):
|
67 |
+
val = str(bool(data[idx])).capitalize()
|
68 |
+
else:
|
69 |
+
val = data[idx]
|
70 |
+
vals.append(val)
|
71 |
+
if len(vals) > 8:
|
72 |
+
vals = vals[:8]
|
73 |
+
return vals
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def get_fake_certainty():
|
76 |
# Generate a random certainty between 75% and 99%
|
|
|
79 |
return formatted_fake_certainty
|
80 |
|
81 |
|
82 |
+
def get_random_suspicious_transaction(data):
|
|
|
83 |
suspicious_data=data[data["isFraud"]==1]
|
84 |
max_n=len(suspicious_data)
|
85 |
random_nr=randrange(max_n)
|
|
|
87 |
return suspicous_transaction
|
88 |
|
89 |
|
90 |
+
def send_evaluation(client, deployment_id, request_log_id, prediction_log_id, evaluation_input):
|
91 |
+
"""Send evaluation to Deeploy."""
|
92 |
+
try:
|
93 |
+
with st.spinner("Submitting response..."):
|
94 |
+
# Call the explain endpoint as it also includes the prediction
|
95 |
+
client.evaluate(deployment_id, request_log_id, prediction_log_id, evaluation_input)
|
96 |
+
return True
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(e)
|
99 |
+
st.error(
|
100 |
+
"Failed to submit feedback."
|
101 |
+
+ "Check whether you are using the right model URL and Token. "
|
102 |
+
+ "Contact Deeploy if the problem persists."
|
103 |
+
)
|
104 |
+
st.write(f"Error message: {e}")
|
105 |
+
|
106 |
+
|
107 |
+
def get_model_url():
|
108 |
+
"""Get model url and retrieve workspace id and deployment id from it"""
|
109 |
+
model_url = st.text_area(
|
110 |
+
"Model URL (default is the demo deployment)",
|
111 |
+
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/ac56dbdf-ba04-462f-aa70-5a0d18698e42/",
|
112 |
+
height=125,
|
113 |
+
)
|
114 |
+
elems = model_url.split("/")
|
115 |
+
try:
|
116 |
+
workspace_id = elems[4]
|
117 |
+
deployment_id = elems[6]
|
118 |
+
except IndexError:
|
119 |
+
workspace_id = ""
|
120 |
+
deployment_id = ""
|
121 |
+
return model_url, workspace_id, deployment_id
|
122 |
+
|