import streamlit as st import pandas as pd # Mocking the lists positive_texts = ["Text A", "Text B", "Text C"] positive_values = [0.8365079365079348, 0.12222222222222279, 0.04603174603174587] negative_texts = ["Text X", "Text Y", "Text Z"] negative_values = [-0.12063492063492065, -0.16349206349206302, -0.053968253968253166] # Create a Streamlit app st.title('Important Variables Analysis') # Create a function to generate a table def create_table(texts, values, title): df = pd.DataFrame({"Feature Explanation": texts, 'Value': values}) st.markdown(f'### {title}') # Markdown for styling st.table(df) # Display a simple table # Arrange tables horizontally using Streamlit columns col1, col2 = st.columns(2) # Display tables in Streamlit columns with col1: create_table(positive_texts, positive_values, 'Important Suspicious Variables') with col2: create_table(negative_texts, negative_values, 'Important Unsuspicious Variables')