File size: 5,585 Bytes
3f46b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38052c
 
3f46b34
e38052c
3f46b34
e38052c
3f46b34
 
 
 
 
 
 
 
 
 
e38052c
3f46b34
 
 
 
 
 
 
e38052c
3f46b34
e38052c
 
3f46b34
 
 
 
 
 
 
e38052c
3f46b34
 
 
 
 
 
 
 
 
 
e38052c
 
3f46b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38052c
3f46b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38052c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# type: ignore -- ignores linting import issues when using multiple virtual environments
import streamlit.components.v1 as components
import streamlit as st
import pandas as pd
import logging
from deeploy import Client


# reset Plotly theme after streamlit import
import plotly.io as pio


pio.templates.default = "plotly"

logging.basicConfig(level=logging.INFO)

st.set_page_config(layout="wide")

st.title("Your title")


def get_model_url():
    """Function to get Deeploy model URL and split it into workspace and deployment ID."""
    model_url = st.text_area(
        "Model URL (without the /explain endpoint, default is the demo deployment)",
        "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/9155091a-0abb-45b3-8b3b-24ac33fa556b/",
        height=125,
    )
    elems = model_url.split("/")
    try:
        workspace_id = elems[4]
        deployment_id = elems[6]
    except IndexError:
        workspace_id = ""
        deployment_id = ""
    return model_url, workspace_id, deployment_id


def ChangeButtonColour(widget_label, font_color, background_color="transparent"):
    """Function to change the color of a button (after it is defined)."""
    htmlstr = f"""
        <script>
            var elements = window.parent.document.querySelectorAll('button');
            for (var i = 0; i < elements.length; ++i) {{ 
                if (elements[i].innerText == '{widget_label}') {{ 
                    elements[i].style.color ='{font_color}';
                    elements[i].style.background = '{background_color}'
                }}
            }}
        </script>
        """
    components.html(f"{htmlstr}", height=0, width=0)

def predict_callback():
    with st.spinner("Loading prediction..."):
        try:
            print("Request body: ", request_body)
            # Call the explain endpoint as it also includes the prediction
            pred = client.predict(
                request_body=request_body, deployment_id=deployment_id
            )
        except Exception as e:
            logging.error(e)
            st.error(
                "Failed to get prediction."
                + "Check whether you are using the right model URL and token for predictions. "
                + "Contact Deeploy if the problem persists."
            )
            return
        st.session_state.pred = pred
    st.session_state.evaluation_submitted = False    


def submit_and_clear(evaluation: str):
    if evaluation == "yes":
        st.session_state.evaluation_input["result"] = 0 # Agree with the prediction
    else:
        # Disagree with the prediction
        st.session_state.evaluation_input["result"] = 1
        # In binary classification problems we can just flip the prediction
        desired_output = not predictions[0]
        st.session_state.evaluation_input["value"] = {"predictions": [desired_output]}
    try:
        # Call the explain endpoint as it also includes the prediction
        client.evaluate(
            deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input
        )
        st.session_state.evaluation_submitted = True
        st.session_state.pred = None
    except Exception as e:
        logging.error(e)
        st.error(
            "Failed to submit feedback."
            + "Check whether you are using the right model URL and token for evaluations. "
            + "Contact Deeploy if the problem persists."
        )


# Define defaults for the session state
if "pred" not in st.session_state:
    st.session_state.pred = None

if "evaluation_submitted" not in st.session_state:
    st.session_state.evaluation_submitted = False

# Define sidebar for configuration of Deeploy connection
with st.sidebar:
    st.image("deeploy_logo_wide.png", width=250)

    # Ask for model URL and token
    host = st.text_input("Host (Changing is optional)", "app.deeploy.ml")
    model_url, workspace_id, deployment_id = get_model_url()
    deployment_token = st.text_input("Deeploy Model Token", "my-secret-token")
    if deployment_token == "my-secret-token":
        st.warning("Please enter Deeploy API token.")

    # In case you need to debug the workspace and deployment ID:
    # st.write("Values below are for debug only:")
    # st.write("Workspace ID: ", workspace_id)
    # st.write("Deployment ID: ", deployment_id)

    client_options = {
        "host": host,
        "deployment_token": deployment_token,
        "workspace_id": workspace_id,
    }
    client = Client(**client_options)

# For debugging the session state you can uncomment the following lines:
# with st.expander("Debug session state", expanded=False):
#     st.write(st.session_state)

# Input (for IRIS dataset)
with st.expander("Input values for prediction", expanded=True):
    st.write("Please input the values for the model.")
    col1, col2 = st.columns(2)
    with col1:
        sep_len = st.number_input("Sepal length", value=1.0, step=0.1, key="Sepal length")
        sep_wid = st.number_input("Sepal width", value=1.0, step=0.1, key="Sepal width")
    with col2:
        pet_len = st.number_input("Petal length", value=1.0, step=0.1, key="Petal length")
        pet_wid = st.number_input("Petal width", value=1.0, step=0.1, key="Petal width")

request_body = {
    "instances": [
        [
            sep_len,
            sep_wid,
            pet_len,
            pet_wid,
        ],
    ]
}

# Predict and explain
predict_button = st.button("Predict", on_click=predict_callback)
if st.session_state.pred is not None:
    st.write(st.session_state.pred)