# type: ignore -- ignores linting import issues when using multiple virtual environments import streamlit.components.v1 as components import streamlit as st import pandas as pd import logging from deeploy import Client from shap import TreeExplainer # reset Plotly theme after streamlit import import plotly.io as pio pio.templates.default = "plotly" logging.basicConfig(level=logging.INFO) st.set_page_config(layout="wide") st.title("Your title") st.markdown( """ """, unsafe_allow_html=True, ) # Set the side bar width to fit the Deeploy logo def get_model_url(): """Function to get Deeploy model URL and split it into workspace and deployment ID.""" model_url = st.text_area( "Model URL (without the /explain endpoint, default is the demo deployment)", "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/9155091a-0abb-45b3-8b3b-24ac33fa556b/", height=125, ) elems = model_url.split("/") try: workspace_id = elems[4] deployment_id = elems[6] except IndexError: workspace_id = "" deployment_id = "" return model_url, workspace_id, deployment_id def ChangeButtonColour(widget_label, font_color, background_color="transparent"): """Function to change the color of a button (after it is defined).""" htmlstr = f""" """ components.html(f"{htmlstr}", height=0, width=0) def predict(): with st.spinner("Loading prediction and explanation..."): try: # Call the explain endpoint as it also includes the prediction exp = client.predict( request_body=request_body, deployment_id=deployment_id ) except Exception as e: logging.error(e) st.error( "Failed to get prediction." + "Check whether you are using the right model URL and token for predictions. " + "Contact Deeploy if the problem persists." ) return st.session_state.exp = exp st.session_state.evaluation_submitted = False hide_expander() def hide_expander(): st.session_state.expander_toggle = False def show_expander(): st.session_state.expander_toggle = True def submit_and_clear(evaluation: str): if evaluation == "yes": st.session_state.evaluation_input["result"] = 0 # Agree with the prediction else: desired_output = not predictions[0] st.session_state.evaluation_input["result"] = 1 st.session_state.evaluation_input["value"] = {"predictions": [desired_output]} try: # Call the explain endpoint as it also includes the prediction client.evaluate( deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input ) st.session_state.evaluation_submitted = True st.session_state.exp = None show_expander() except Exception as e: logging.error(e) st.error( "Failed to submit feedback." + "Check whether you are using the right model URL and token for evaluations. " + "Contact Deeploy if the problem persists." ) # Define defaults for the session state if "expander_toggle" not in st.session_state: st.session_state.expander_toggle = True if "exp" not in st.session_state: st.session_state.exp = None if "evaluation_submitted" not in st.session_state: st.session_state.evaluation_submitted = False # Define sidebar for configuration of Deeploy connection with st.sidebar: st.image("deeploy_logo_wide.png", width=250) # Ask for model URL and token host = st.text_input("Host (Changing is optional)", "app.deeploy.ml") model_url, workspace_id, deployment_id = get_model_url() deployment_token = st.text_input("Deeploy Model Token", "my-secret-token") if deployment_token == "my-secret-token": st.warning("Please enter Deeploy API token.") # In case you need to debug the workspace and deployment ID: # st.write("Values below are for debug only:") # st.write("Workspace ID: ", workspace_id) # st.write("Deployment ID: ", deployment_id) client_options = { "host": host, "deployment_token": deployment_token, "workspace_id": workspace_id, } client = Client(**client_options) # For debugging the session state you can uncomment the following lines: # with st.expander("Debug session state", expanded=False): # st.write(st.session_state) # Input (for IRIS dataset) with st.expander("Input values for prediction", expanded=st.session_state.expander_toggle): st.write("Please input the values for the model.") col1, col2 = st.columns(2) with col1: sep_len = st.number_input("Sepal length", value=1.0, step=0.1, key="Sepal length") sep_wid = st.number_input("Sepal width", value=1.0, step=0.1, key="Sepal width") with col2: pet_len = st.number_input("Petal length", value=1.0, step=0.1, key="Petal length") pet_wid = st.number_input("Petal width", value=1.0, step=0.1, key="Petal width") request_body = { "instances": [ [ sep_len, sep_wid, pet_len, pet_wid, ], ] } # Predict and explain predict_button = st.button("Predict", on_click=predict) if st.session_state.exp is not None: st.write(st.session_state.exp) # predictions = st.session_state.exp["predictions"] # request_log_id = exp["requestLogId"] # prediction_log_id = exp["predictionLogIds"][0] # # exp_df = pd.DataFrame( # # [exp["explanations"][0]["shap_values"]], columns=exp["featureLabels"] # # ) # st.write("Predictions:", predictions) # # Evaluation # if st.session_state.evaluation_submitted is False: # evaluation = st.radio("Do you agree with the prediction?", ("yes", "no")) # if evaluation == "no": # desired_output = # TODO # st.session_state.evaluation_input = { # "result": 1, # "value": {"predictions": [desired_output]}, # } # else: # st.session_state.evaluation_input = {"result": 0} # submit_button = st.button("Submit evaluation", on_click=submit_and_clear, args=(evaluation,)) # else: # st.success("Evaluation submitted successfully.")